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In this work, we propose a new subclass of extreme-mass-ratio-inspirals (EMRIs): mass-gap EMRIs, consist-
ing of a compact object in the lower mass gap ∼ (2.5 − 5)M� and a massive black hole (MBH). The mass-gap
object (MGO) may be a primordial black hole or produced from a delayed supernova explosion. We calculate
the formation rate of mass-gap EMRIs in both the (dry) loss-cone channel and the (wet) active galactic nucleus
disk channel by solving Fokker-Planck-type equations for the phase-space distribution. In the dry channel, the
mass-gap EMRI rate is strongly suppressed compared to the EMRI rate of stellar-mass black holes (sBHs) as a
result of mass segregation effect. In the wet channel, the suppression is roughly equal to the mass ratio of sBHs
over MGOs, because the migration speed of a compact object in an active galactic nucleus disk is proportional
to its mass. We find that the wet channel is much more promising to produce mass-gap EMRIs observable by
spaceborne gravitation wave detectors. (Non-)detection of mass-gap EMRIs may be used to distinguish different
supernova explosion mechanisms and constrain the abundance of primordial black holes around MBHs.

I. INTRODUCTION

Observations of Galactic X-ray binaries have indicated a
dearth of compact objects around ∼ (2.5 − 5)M� in the mass
spectrum [e.g., 1–3]. Whether this mass gap is a result of ob-
servational selection effects or underlying supernova (SN) ex-
plosion mechanism has been an open question for more than a
decade [2, 4–6]. More recently new events detected with grav-
itational waves (GWs) and time-domain astronomy suggest
the existence of mass-gap objects (MGOs) in compact object
binaries and in Galactic non-interacting binaries - the com-
pact objects of ∼ (2.6−2.8)M� in compact binary coalescence
events GW190814 and GW200210 [7, 8], a compact object of
∼ 3.3M� as a non-interacting companion of a giant [9], and
a compact object of ∼ 3.0M� as a non-interacting companion
of a red giant [10] (see [11–13] for candidate MGOs in non-
interacting binaries and as dark lens in the Milky Way). These
identified MGOs provide evidences of a population of com-
pact objects lying in the mass gap, or even a more extreme
possibility that the mass gap itself does not exist. A natural
question is that, if indeed a population of MGOs is present,
what should be their origin? One viable option is MGOs
are born in delayed SN explosions [6], which also provides
an explanation to the merger rate of GW190814-like events
[14, 15]. A more exotic possibility is that MGOs are primor-
dial black holes (PBHs) [16–19], which have been intensively
discussed in the context of compact binary mergers detected
by LIGO/Virgo. With the upgrading of LIGO/Virgo and the
coming era of third-generation detectors, more GW190814-
like events are expected to be detected. However, as there is
already a large number of proposed formation channels [e.g.,
20–29], many of which are still subject to large theoretical un-
certainties (see [30] for a recent review), it is unclear whether
we will be able to nail down the the origin of MGOs with only
the detection of stellar-mass binaries.

To better answer these questions, we investigate the possi-
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blity that MGOs appear as components of some extreme mass
ratio inspirals (EMRIs), to form mass-gap EMRIs. We pro-
pose that future detections of EMRIs and especially mass-gap
EMRIs by spaceborne GW detectors, may be a useful probe
for the origins of MGOs, thanks to the limited number of
EMRI formation channels and distinct signatures of EMRI
sources from different channels. There are two main chan-
nels of EMRI formation: the dry loss-cone channel [31–39]
and the wet active galactic nucleus (AGN) disk channel [40–
45] (other processes involving tidal disruption or tidal cap-
ture of binary sBHs, or tidal stripping of giant stars [46–49]
may also contribute to EMRI formation and Naoz et al.[50]
pointed out EMRI formation in MBH binaries is more effi-
cient than around single MBHs). In the dry channel, a stellar-
mass black hole (sBH) is scattered by stars in the nuclear stel-
lar cluster and gravitationally captued by the MBH. There are
two relevant timescales in the long-term dynamics: the GW
emission timescale tgw on which the sBH orbit shrink, and the
diffusion timescale tJ on which the orbital angular momen-
tum changes by successive scatterings [31, 34, 51–53]. If GW
emission is more efficient with tgw < tJ , the sBH becomes a
stable EMRI with continually shrinking orbit until the final
coalescence with the MBH. If scatterings are more efficient,
i.e., tJ < tgw, the sBH is randomly scattered towards or away
from the MBH. SBHs that are scattered into the MBH with-
out losing much energy via GW emission are called prompt
infalls [31]. As the GW emission timescale is much shorter
for eccentric orbiters (e → 1), EMRIs in the dry channel are
highly eccentric at formation.

A fraction O(10−2 − 10−1) of MBHs in the universe (re-
ferred as AGNs) are actively accreting gas with an accretion
disk [54, 55]. The presence of an accretion disk introduces
new interactions affecting the motion of sBHs in the stellar
cluster. For a sBH embedded in the AGN disk, its periodic
motion produces density waves [56–59] that in turn drive the
sBH to migrate inward, damp its orbital eccentricity and its in-
clination w.r.t. the disk plane. For a sBH on a highly inclined
orbit, the effects of density waves becomes subdominant to
dynamical friction [60, 61] arising from the relative motion
of the sBH and the surrounding gas as it passes through the
disk. As a result, sBHs are first captured onto the disk driven
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by dynamical fraction and density waves, and then migrate in-
ward driven by the density waves upon reaching the vicinity
of the MBH, where GW emission become dominant. We re-
fer this type of EMRIs as wet EMRIs. Because density waves
are very efficient at damping out the eccentricity, wet EMRIs
are essentially circular. Dry and wet EMRIs can be easily
distinguished from each other by measuring their eccentrici-
ties using spaceborne gravitational wave detectors [37–39]. In
addition, the imprints of an accretion disk on the EMRI wave-
form may also be detectable [62, 63].

In the dry channel, sBHs are generally closer to the central
MBH than MGOs due to the mass segregation, so that their
EMRI rate should be larger. In the wet channel, the EMRI for-
mation rates of both sBHs and MGOs mainly depend on the
capture rate onto the AGN disk and the rate of migration along
the disk. Both rates are proportional to the object mass, there-
fore the EMRI rate of MGOs is lower than that of sBHs by a
factor of their mass ratio at most. We find the wet EMRI rate
per AGN is generally higher than the dry EMRI rate per MBH
byO(101−103) for sBHs, and byO(103−104) for MGOs. Tak-
ing into account the AGN fraction fAGN = O(10−2−10−1), the
wet channel turns out to be primary way in producing mass-
gap EMRIs. If there is no gap in the mass spectrum of super-
nova remnants and roughly equal number of MGOs and sBHs
are born in SN explosions, we expect LISA to detect . 1 dry
mass-gap EMRIs per year, and O(1 − 102) × ( fAGN/1%) wet
mass-gap EMRIs per year. In addition, future detections of
dry and wet mass-gap EMRIs have interesting implications
of MGO formation. An excess of mass-gap EMRI detection
could be a signature of MGOs of more exotic origin, e.g.,
PBHs. The relative fraction of mass-gap EMRIs to sBH EM-
RIs is a sensitive probe for the mass spectrum of SN remnants
and therefore the SN explosion mechanism.

The remaining part of this paper is organized as follows. In
Sec. II and III, we introduce the two EMRI formation chan-
nels and the formation rates of MGOs and sBHs in these two
channels. In Sec. IV, we forecast the detection prospects of
these EMRIs by LISA. We summarize this work in Sec. V.
Throughout this paper, we use geometrical units G = c = 1,
and assume a flat ΛCDM cosmology with Ωm = 0.307,ΩΛ =

1 −Ωm and H0 = 67.7 km/s/Mpc (h = 0.677).

II. DRY LOSS-CONE CHANNEL

In this section, we will first briefly introduce the loss-cone
mechanism along with the Fokker-Planck equation governing
the evolution of stars in a stellar cluster around a MBH. After
that we calculate the EMRI formation rates of both sBHs and
MGOs via the loss-cone mechanism.

A. Loss-cone mechanism

Consider a star orbiting around a MBH, with specific bind-
ing energy E := φ − v2/2 and specific angular momentum J,
where φ(r) is the (positive) gravitational potential and v2/2 is
the kinetic energy. Its orbital motion is affected by two main

effects: GW emission which shrinks the orbit on a timescale
tgw and gravitational scatterings by other stars in the stellar
cluster which changes the orbital angular momentum by order
of unity on a timescale tJ . For a star on a tight and eccentric
orbit where the GW emission is more efficient with tgw < tJ ,
the orbit is stable against random scatterings and the star be-
comes an stable EMRI [31]. On the other hand, for a star on
a wide and/or circular orbit where the GW emission is less ef-
ficient with tgw > tJ , the star is expected to be scattered into
a random direction: away from, towards or even directly into
the central MBH.

In the phase space, a region of low angular momentum
J < Jlc(E) is usually referred as the loss cone, where a star
ususally promptly falls into the MBH within one orbital period
P(E) if its angular momentum is not altered much by gravita-
tional scatterings. As a result, the loss cone region satisfying
P(E) < tJ is unpopulated (empty regime) and the loss cone
region satisfying P(E) > tJ is populated (full regime). For
the problem we are investigating, relevant orbits are of low
energy (E ≈ 0) with semi-major axis length a � M• and the
boundary of the loss cone is [64]

Jlc(E ≈ 0) = 4M• . (1)

B. Fokker-Planck equation

Statistical properties of stars can be described by their dis-
tribution functions fi(t,~r,~v) in the (~r,~v) phase space, where i
labels different star species. Following Refs. [65, 66], we ap-
proximate the distribution functions as fi ≈ fi(t, E,R), where
R := J2/J2

c (E) is the normalized orbital angular momentum
with Jc(E) being the maximum orbital angular momentum of
a star with energy E. In order to relate the distribution func-
tion f (E,R) to the number density n(r), and derive the Fokker-
Planck equation, it is necessary to understand the properties of
star orbits in given potential field φ(r), for which we summa-
rize as follows [66]. The definition of energy suggests that

2(φ − E) = v2 = v2
t + v2

r =
J2

r2 + v2
r , (2)

where vt and vr are the tangential velocity and the radial ve-
locity respectively. For a circular orbit of energy E, its orbit
radius rc(E) and angular momentum Jc(E) are determined by

J2
c (E) = −r3

cφ
′(rc) ,

2(φ(rc) − E) =
J2

c

r2
c
.

(3)

For a general non-circular orbit with parameters (E,R), its
turning points (apsis/periapsis) r± are determined by

2(φ(r±) − E) =
J2

r2
±

, (4)

and its orbit period P(E,R) is

P(E,R) = 2
∫ r+

r−

dr
vr
. (5)
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Defining the particle number density in the (E,R) phase space
as N(E,R), with N(E,R)dEdR :=

∫ r+

r−
d3rd3v f (E,R), we have

[65, 66]

N(E,R) = 4π2P(E,R)J2
c (E) f (E,R)

: = C(E,R) f (E,R) .
(6)

The position-space particle number density n(r) can be ex-
pressed by the distribution function f (E,R) by [66]

n(r) =
2π
r2

∫ φ(r)

0
dEJ2

c (E)
∫ Rmax

0

dR
vr

f (E,R) , (7)

where Rmax(r, E) = 2r2(φ(r) − E)/J2
c (E), and vr(r, E,R) =

2(φ− E)− J2/r2 = (Rmax −R)J2
c (E)/r2. In the case of thermal

distribution f = f (E), the above equation simplifies as [67]

n(r) = 4π
∫ φ(r)

0
dE

√
2(φ(r) − E) f (E) . (8)

With all these orbital properties, the Fokker-Planck equa-
tion governing the phase space evolution is written in the form
of [33, 65, 66, 68, 69]

C
∂ f
∂t

= −
∂

∂E
FE −

∂

∂R
FR , (9)

with C = 4π2J2
c P being the weight function defined in Eq. (6)

and FE,R being the flux in the E/R direction:

−FE = C

(
DEE

∂ f
∂E

+ DER
∂ f
∂R

+ DE f
)
,

−FR = C

(
DRR

∂ f
∂R

+ DER
∂ f
∂E

+ DR f
)
.

(10)

The diffusion and advection coefficients are functions of the
distribution functions and are derived in Appendix A.

Given initial condition f (t = 0, E,R), we evolve the cluster
according to the Fokker-Planck equation (9) subject to follow-
ing boundary conditions. On the E → 0 boundary, we fix the
distributions to their initial values, i.e.,

f (t, E,R)|E→0 = f (t = 0, E,R)|E→0 , (11)

considering the long relaxation timescale there. On the R = 1
boundary, the flux in the R direction should vanish,

FR|R→1 = 0 . (12)

On the loss cone boundary R = Rlc(E) := J2
lc/J2

c (E), there are
two different regimes: full loss cone regime where

ylc :=
Rlc

(DRR/R)R→0P
< 1 , (13)

and empty regime where ylc > 1. In the empty regime, stars
are expected to fall into the MBH within one orbital period
P (that’s why the phase space is empty). In the full regime,
stars are in general scattered into/out of the loss cone muliti-
ple times within one orbital period, therefore the phase space

is full of stars and the rate of stars falling into the MBH is
low. Quantitatively, the flux in the R direction was obtained in
Ref. [65] as

−
FR

C
=

(DRR

R

) ∣∣∣∣∣∣
R→0

f (R0)
ln(R0/Rlc) + F (ylc)

, (14)

where R0 is any small R in the range of Rlc ≤ R � 1, F (ylc) ∼
1/ylc for ylc . 1 and F (ylc) ' 0.824y−1/2

lc for ylc & 1. At
R0 = Rlc, the above equation simplifies as FR(Rlc) = 0 in the
full regime, and f (Rlc) = 0 in the empty regime.

As a result, the EMRI rate and the promp infall rate per
MBH via loss cone is given by

Γemri,lc =

∫ +∞

Egw

~F · d~l ,

Γinfl,lc =

∫ Egw

σ2

~F · d~l ,

(15)

where ~F = (FE , FR), d~l = (dE, dR) is the line element along
the boundary of the loss cone, and Egw is the critical energy
where tgw = tJ . To calculate the GW emission timescale tgw,
we use a recently corrected version of Peters’ time-scale that
accounts for eccentricity evolution and post-Newtonian cor-
rections [51–53, 70], with

tgw =
5a4

256M2
•m

(1 − e2)7/2

1 + 73
24 e2 + 37

96 e4
81−

√
1−ee

5M•
a(1−e) , (16)

where m is the mass of the star orbiting around the MBH,
a and e are the orbital semi-major axis and the eccentricity,
respectively. For calculating the diffusion timescale tJ in the
J-direction, we use the approximation [31]

tJ ≈
J2

J2
c (E)

tE(E,R) =
J2

J2
c (E)

E2

2DEE(E,R = 0)
. (17)

C. EMRI rate and prompt infall rate

We initialize the system with Tremaine’s MBH+stellar
cluster model [71, 72], assuming 3 star species in the stel-
lar cluster: stars with mass mstar, mass-gap objects with mass
mmgo and heavy sBHs with mass msbh. The total star/mgo/sBH
mass in the cluster are Mstar, Mmgo and Msbh, respectively.
Their number densities in the Tremaine’s cluster model are
specified by

nstar(r) =
Mstar

mstar

3 − γ
4π

ra

rγ(r + ra)4−γ ,

ni(r) = δi × nstar(r) ,
(18)

with i the index labelling different star species, ra the density
transition radius, γ the density scaling power index, and δi the
abundance of species i relative to stars.

As an example, we initialize a stellar cluster with three dif-
ferent star species with mi = (1, 3, 10)M�, δi = (1, 10−3, 10−3)
around a MBH with M• = 4 × 106M�. Note if there is no
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FIG. 1. In the fiducial stellar cluster around a MBH with M• = 4× 106 M�, distribution functions fi(E,R) (i = star,mgo, sbh) at tf = 2 Gyr are
shown in the first 3 panels. The 4th panel shows R-integrated distribution functions f̄i at ti = 0 (dashed lines) and at tf = 2 Gyr (solid lines).
All the distribution functions are shown in units of 105pc−3/(2πσ2)3/2.
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FIG. 2. Upper panel: EMRI rates Γemri,lc and prompt infall rates
Γinfl,lc of both sBHs and mass-gap objects in the loss-cone channel.
Lower panel: differential rates dΓ/dE at t = 2 Gyr, and the two dots
are the critical energy Emgo,sbh

gw .

gap in the mass spectrum of SN remnants with the power-law
mass spectrum dN/dm ∝ m−2.35 [73] holding in the whole
mass range 3M� ≤ m ≤ 50M�, we expect nearly equal num-
ber of MGOs and sBHs produced in SN explosions. The
total star mass Mstar = 20M•, the density transition radius
ra = 4rh = 4M•/σ2 and the density power index γ = 1.5,
where the star velocity dispersion σ satisfies the M• − σ rela-

tion [74, 75]

M• = 1.53 × 106
(

σ

70 km/s

)4.24

, (19)

We evolve the cluster according to the Fokker-Planck equa-
tion (9) (see [44] for detailed numerical algorithm). In first 3
panels of Fig. 1, we show the distribution functions fi(t, E,R)
at t = 2 Gyr, and in the 4th panel, we show the R-integrated
functions f̄i(E) =

∫ 1
0 dR fi(t, E,R) at t = 0 and t = 2 Gyr, re-

spectively. From the 4th panel, we see sBHs (which are the
most massive star component) concentrate around the MBH
as a result of mass segregation, yielding a large increase in
the distribution function for sBHs at small radii/large binding
energy E with time [32, 34, 76], while little concentration is
found for less massive MGOs or stars.

In the upper panel of Fig. 2, we show the EMRI rates and
the prompt infall rates of both sBHs and MGOs, where Γ

mgo
emri

is lower than Γsbh
emri by a factor of O(102), as a result of the

stronger mass segregation and shorter GW emission timescale
tgw for sBHs. In contrast, the prompt infall rates are less af-
fected by the mass segregation, because the prompt infall rate
depends on the star density at lower energy (< Egw), while
the EMRI rate depends on the star density at higher energy
(> Egw) (Eq. 15), and the latter is more sensitive to the mass
segregation (Fig. 1). As a result, we find the number of prompt
infalls per EMRI Np := Γinfl/Γemri are Nsbh

p ≈ 10,Nmgo
p ≈ 250

for the fiducial model.
For an analytic understanding of these results, we re-

estimate the number of prompt infalls per EMRI Np using pre-
vious analytic formula [Eq. (17) and (26) in [31]],

Γemri,lc =

∫ agw

0

4πa2n(a)
ln(Rlc)trlx(a)

da ∼ a1.5−2p
gw ,

Γinfl,lc =

∫ amax

agw

4πa2n(a)
ln(Rlc)trlx(a)

da ∼ a1.5−2p
max ,

(20)

where n(a) ∼ a−1.5−p is the number density, trlx(a) ∼ ap is the
local relaxation timescale, amax is a characteristic radius of
the stellar cluster, and agw is the critical radius where tgw = tJ
[Eqs.(16,17)]. For a single-species cluster filled with stars of
mass m, the dependence of agw on mass m and on the MBH
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mass M• is [31, 50],
agw

M•/σ2 ∝ m
2

3−2p M0
• . (21)

For comparison with numerical results, we formulate the
above analytic results in the phase space, with the analytic
differential rates

dΓ/dE = dΓ/da × da/dE ∼ E2p−2.5 , (22)

which can be directly compared wtih the numerical results of
the fiducial model at t = 2 Gyr (lower panel of Fig. 2). From
the comparison, we see the power laws dΓmgo/dE ∼ E−2.25

and dΓsbh/dE ∼ E−1.75 are a good approximation at E & 10σ2,
i.e., 2pmgo ≈ 0.25, 2psbh ≈ 0.75. In terms of the differential
rates, the EMRI rate and the prompt infall rates are written as

Γemri,lc =

∫ ∞

Egw

dΓ/dE dE ,

Γinfl,lc =

∫ Egw

σ2
dΓ/dE dE ,

(23)

where the critical energy are numerically found as Esbh
gw =

63σ2, Emgo
gw = 171σ2 and they are consistent with the ana-

lytic expectation Esbh
gw /E

mgo
gw ≈ (msbh/mmgo)

2
3−2p [Eq. (21)]. Us-

ing the power-law approximations to the differential rates, we
have

Np ≈ (Egw/Emin)1.5−2p, (24)

where Emin ∈ (1, 10)σ2 is an effective minimum energy (lower
panel of Fig. 2). As a result, we obtain an analytic estimate
Nsbh

p ∈ (4, 22) and Nmgo
p ∈ (35, 600).

Similar to the fiducial model, we initialize the stellar cluster
around a MBH with mass in the range of (105, 107)M�, then
evolve the system for T0 = 5 Gyr, and summarize the time-
averaged EMRI rates Γ̄

sbh,mgo
emri and prompt infall rates Γ̄

sbh,mgo
infl

in Fig. 3. We find the EMRI rates peak around M• = 106M�,
because the rates are limited by the longer relaxation timescale
of the stellar cluster around a heavier MBH, while the rates
are limited by the lower number of sBHs and MGOs in the
stellar cluster around a lighter MBH [44]. We find the time-
averaged EMRI rates are Γ̄sbh

emri = O(10 − 102) Gyr−1 and
Γ̄

mgo
emri = O(1) Gyr−1. For longer evolution time T0, the rates

decrease further because of the depletion of sBHs and MGOs
in the stellar cluster. On average, the number of prompt in-
falls per EMRI Np are similar to in the fiducial model with
Nsbh

p ≈ 10,Nmgo
p ≈ 250, except Np(M• = 105M�) is lower by a

factor ∼ 2. The nearly independence of Np on the MBH mass
M• comes from the independence of agw (or equavilently Egw)
on M• [Eq. (21,24)], while Nmgo,sbh

p (M• = 105M�) are lower
simply because MGOs/sBHs around the lighter MBH are of
lower number and are quickly depleted via the loss cone, con-
sequently the critical energy Egw decreases and Np is reduced.

III. WET AGN DISK CHANNEL

In the presence of an accretion disk around a MBH, the dis-
tributions of all different orbiting object species are affected

105 106 107

M [M ]

100

101

102

dr
y

[G
yr

1 ]

sbh
infl /10
mgo
infl /250

sbh
emri
mgo
emri

FIG. 3. Average EMRI rates Γ̄emri,dry and average prompt infall rates
Γ̄infl,dry of both sBHs and mass-gap objects in the loss-cone channel.

by the disk. As a result, the spherical symmetry is broken and
the distribution function f (E,R, µ) generally acquires depen-
dence on the orbital inclination ι w.r.t. the disk plane, where
we have defined µ := cos ι = Ĵ · Ĵdisk, with Ĵ and Ĵdisk being
the unit direction vectors of the star orbital angular momen-
tum and the disk angular momentum, respectively.

For the problem we are considering, all stars can be conve-
niently decomposed as a cluster component and a disk com-
ponent, i.e.,

f (E,R, µ)→ f (E, µ) + g(E)δ(µ − 1)δ(R − 1) , (25)

where we have approximate the cluster-component distribu-
tion as R-independent and approximate the disk component
as circular orbiters lying on the equator with ι = 0 (µ = 1),
because the orbital eccentricity damping timescale is in gen-
eral much shorter than the migration timescale (see subsec-
tion III A for details). With this decomposition, we have num-
ber density n(r, θ) of the cluster-component stars and surface
number density Σ(r) of the disk-component stars as

n(r, θ) = 4π
∫ φ(r)

0
dE

√
2(φ(r) − E) f̄ (E, θ) ,

Σ(r) = 2π2rE
√

2(φ(r) − E)g(E)
∣∣∣∣
r=rc(E)

,

(26)

with

f̄ (E, θ) =
1

2π

∫ 2π

0
dη f (E, µ = sin θ cos η) , (27)

where θ is the polar angle w.r.t. to the Ĵdisk direction.
In the remaining part of this section, we will first summa-

rize the important interactions between stars and the accre-
tion disk, then incorporate these interactions into the Fokker-
Planck equation, and finally evolve the stellar cluster to calcu-
late the wet EMRI rates.

A. Star-disk interactions

Interactions of an accretion disk with stars, MGOs and
sBHs are similar in aspects of density waves and dynami-
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cal friction. In term of gas accretion onto stars, MGOs and
sBHs within the AGN disk, the star size makes a difference.
Compact objects of relatively small sizes only grow mildly
within the AGN disk, while the stellar evolution is expected to
be impacted by gas accretion onto stars of much larger sizes
[77, 78]. In this work, we are not intended to model the star
evolution in detail, and we simply assume no mass change of
all the star species during the evolution period.

For illustration purpose, we take sBHs as an example. As a
sBH orbits around the central MBH surrounded by an accre-
tion disk, its periodic motion generates density waves, which
in turn drive the star to migrate inward, damp its orbital ec-
centricity e and its orbital inclination ι. For a highly inclined
orbiter, the density wave effects become subdominant with re-
spect to dynamical friction as it goes through the gas disk. The
two effects (density waves and dynamical friction) together
contribute to the advection in (E, µ) space as [60, 61]

〈∆µ〉dsk
t = (1 − µ2)

ι

sin ι
×min.

{
0.544
twav

,
1.46
twav

h4

ι sin3(ι/2)

}
,

〈∆E〉dsk
t = E ×min.

{
2.7 + 1.1αs

tmig,I
,

8.8
tmig,I

h2

sin(ι) sin(ι/2)

}
,

(28)
with 〈∆X〉t := ∆X

∆t |∆t→0, αs := d ln Σ/d ln r and

tmig,I =
M
m

M
Σr2 h2 , twav = tmig,Ih2 , (29)

where m is the mass of the orbiter, M is the total mass within
radius r, h and Σ are disk scale height and the disk surface
density [79].

For a sBH captured into the disk, its orbital eccentricity
will be damped by the eccentricity density waves on timescale
twav, which is generally much shorter than all other relevant
timescales, including the migration timescale tmig,I and two
diffusion timescales, E2/DEE and (1 − µ2)/Dµµ. As a result,
sBHs in the AGN disk are generally moving in circular orbits.
For a sBH embedded in the gas disk, surrounding gas tends to
flow towards it nearly in the radial direction at large distances,
in the rest frame of the sBH. Due to the differential rotation
of the gas disk, the inflowing gas generally carries non-zero
angular momentum relative to the sBH, consequently circu-
larizes and forms a disk around the sBH. The gas inflow rate
at the outer boundary is usually super-Eddington and a strong
outflow naturally emerges. As a result, a major part of the in-
flowing gas may escape as outflow and only the remaining part
is accreted by the sBH (see Ref. [77] and references therein for
detailed modeling). Because of the circularization process, it
is reasonable to expect that the outflow carries minimal net
momentum with respect to the sBH, and the momentum car-
ried by the inflow eventually transfers to the sBH. The head
wind contributes to the advection in the E-direction as

〈∆E〉wnd
t =

2J
J̇wnd

(for in-disk orbiters), (30)

where J̇wnd is sBH angular momentum loss rate due to the
head wind (see Ref. [44] for calculation details).

100 101 102 103 104 105

E/ 2

105

107

109

1011

E
<

E
>

t
[y

r]

-disk
-disk

FIG. 4. The migration timescales of a 10M� BH embedded in the
fiducial α and β disks, respectively, where the GW emission becomes
dominant at E/σ2 ∼ 105 or equivalently a ∼ 102 M•.

GW emission only becomes important when the orbiter is
very close to the MBH and it drives an advection in the E
direction for a circular orbiter as [70]

〈∆E〉gw
t =

64
5

M2m
a4 E . (31)

Accretion disk structure of AGNs has not been well under-
stood especially in the outer parts, where both disk heating
mechanism and the angular momentum transport mechanism
are not clear. Three commonly used AGN disk models (α/β
disks [80], and TQM disk proposed by Thompson, Quataert,
and Murray [81]) have been numerically solved and compared
in our previous work [44]. In this work, we will use α and
β disks with accretion rate Ṁ• = 0.1Ṁ•,Edd as fiducial disk
models (Fig. 5 in [44]). In Fig. 4, we show the migration
timescales E/ 〈∆E〉t := E/(〈∆E〉dsk

t + 〈∆E〉wnd
t + 〈∆E〉gw

t ) of
a sBH with msbh = 10M� embedded in the two fiducial ac-
cretion disks. The two disks only differs in inner parts where
the radiation pressure dominates over the gas pressure and the
two migration timescales only differs where E/σ2 & 103. We
do not include the TQM disk model in this work because a
much more efficient angular momentum transport mechanism
is assumed in the TQM disk model, which is inconsistent with
the turbulence viscosity driven by magnetorotational instabil-
ity in inner parts of the accretion disk [82–84]. Due to the
high efficiecy of the angular momentum transport assumed in
the TQM disk model, TQM disks are in general of lower sur-
face density, therefore longer migration timescale tmig,I, which
hinders sBHs and MGOs from migrating to the vicinity of
the central MBH and forming EMRIs if Tdisk < tmig,I. If
Tdisk > tmig,I, the EMRI rates in TQM disks are similar to
those in α/β-disks (see [44] for details).
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B. Fokker-Planck equation

For cluster-component stars, the Fokker-Planck equation
takes the form

Cµ
∂ f
∂t

= −
∂

∂E
FE −

∂

∂µ
Fµ , (32)

with flux

−FE = Cµ

(
DEE

∂ f
∂E

+ DEµ
∂ f
∂µ

+ DE f
)
,

−Fµ = Cµ

(
Dµµ

∂ f
∂µ

+ DEµ
∂ f
∂E

+ Dµ f
)
,

(33)

and the weight function

Cµ(E) :=
1
2

∫ 1

0
C(E,R)dR , (34)

where the factor 2 comes from
∫ 1
−1 dµ. All the coefficients of

the Fokker-Planck equation (32) are contributed by star inter-
actions with the accretion disk and by scatterings with both the
cluster-component stars and the disk-component stars, where
the first only contributes to the advection coefficients as

DE = −
(
〈∆E〉dsk

t + 〈∆E〉gw
t

)
, Dµ = − 〈∆µ〉dsk

t . (35)

and the latter two contributions are given in Eqs.(B16,B17),
respectively.

With proper initial conditions, we evolve the system ac-
cording to Eq. (32) with the following boundary conditions.
On the E → 0 boundary, we again fix the distribution, i.e.,

f (t, E,R)|E→0 = f (t = 0, E,R)|E→0 . (36)

On the E → Emax boundary, where the evolution of distribu-
tion function is dominated by GW emission, we set

FE |E→Emax = −CµDE f . (37)

On the µ = −1 boundary, we use the zero-flux condition

Fµ|µ→−1 = 0 . (38)

On the µ = 1 boundary, where the evolution of distribution
function is dominated by the inclination damping arising from
the normal density waves, we set

Fµ|µ→1 = −CµDµ f . (39)

For disk-component stars, the Fokker-Planck equation re-
duces to be 1-dimensional,

Cµ
∂g
∂t

=
∂

∂E

[
Cµ

(
DEE

∂g
∂E

+ DEg
)]

+ Fµ(E, µ = 1) , (40)

with the source term arising form disk-component stars cap-
tured by the disk. We also find the evolution of disk-
component stars is dominated by the star-disk interactions and

GW emission [Eqs. (28,30,31)], so we simply neglect the con-
tributions from scatterings, i.e.,

DE = −
(
〈∆E〉dsk

t + 〈∆E〉gw
t + 〈∆E〉wnd

t

)
, DEE = 0 . (41)

Now Eq. (40) is an first-order differential equation, which re-
quires only one boundary condition, and we choose it as

g(t, E,R)|E→0 = g(t = 0, E,R)|E→0 . (42)

The wet EMRI rate is determined by the flux in the E di-
rection at the Emax boundary, i.e.,

Γemri,disk = −CµDEg|E=Emax . (43)

Strictly speaking, the cluster-component contribution should
also be included in addition to the disk-component contribu-
tion. As we will see later, the disk-component constribution
at the Emax boundary turns out to be dominant.

C. Wet EMRI rates

Considering that the accretion history of MBHs is likely
episodic [85, 86] and the active phase of an MBH is in gen-
eral much shorter that its quiet phase [54, 55, 87], we sim-
plify the duty cycle of an AGN as a long quiet phase of
T0 = 5 Gyr followed by a short active phase of duration
Tdisk ∈ {106, 107, 108} yr. This simplied picture holds if the
cluster evolution driven by purely two-body scatterings is neg-
ligible during a quiet phase between two active episodes, so
that adjacent episodes can be effectively glued together as we
understand the hisotory of evolution.

For calculating the wet EMRI rate, we initialize the stellar
cluster around a MBH and evolve the system for T0 in the
same way as in the previous section, then turn on the accretion
disk and initialize the cluster-component and disk-component
distributions as

fi(t = 0, E, µ) = 0.99
∫ 1

0
fi(t = T0, E,R) dR ,

gi(t = 0, E) = 0.01
∫ 1

0
fi(t = T0, E,R) dR ,

(44)

where the integrand fi(t = T0, E,R) is the distribution function
at the end of the quiet phase, and the initial fraction 0.01 is the
typical disk aspect ratio [44], the exact value of which does not
matter because the disk-component star densities are mostly
determined by subsequent capture and migration processes.
With this initialization, we continue the evolution of fi(t, E, µ)
and gi(t, E) according to Eqs.(32,40) for a duration Tdisk.

As a fiducial model of the wet channel, we again consider
a fiducial model with a MBH and a stellar cluster same to
in the previous section, and a fiducial α-disk with lifetime
Tdisk = 108 yr (Fig. 4). In the first 3 panels of Fig. 5, we
show the cluster-component distribution functions fi(E, µ) at
t = 107 yr, where we see low-inclination (µ→ 1) orbiters have
been captured into the disk, therefore the distribution function
fi(E, µ → 1) is relatively lower. In the 4th panel, we show
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FIG. 5. In the fiducial stellar cluster around a MBH with M• = 4 × 106 M�, the cluster-component distribution functions fi(E, µ) (i =

star,mgo, sbh) at t = 107 yr are shown in the first 3 panels. The 4th panel shows µ-integrated cluster-component distribution functions f̄i(E)
(solid lines) and disk-component gi(E) (dashed lines). All the distribution functions are shown in units of 105pc−3/(2πσ2)3/2.
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FIG. 6. Wet EMRI rates Γemri,disk(t) of sBHs and MGOs. For com-
parision, we also plot the average dry EMRI rates Γ̄emri,lc during the
quiet phase as horizontal lines (Fig. 3).

the µ-integrated distribution functions f̄i(E) =
∫ 1
−1 dµ fi(E, µ)

and the disk-component functions ḡi(E) at t = 107 yr. The
disk component dominates over the cluster component in the
vicinity of the MBH (large E), and the disk component peaks
around E ∼ 105σ2 where the migration timescale peaks
(Fig. 4). It is interesting to note that the disk-component dis-
tribution functions gi(E) are proportional to their abundance
δi with no dependence on different star masses mi, simply be-
cause both the rate of stars captured onto the disk and the mi-
gration rate of stars along the disk are proportional to their
masses mi, and the local density gi(E) is determined by the
ratio of the two rates in the equilibrium state.

In Fig. 6, we show the wet EMRI rates for both sBHs and
MGOs as functions of time. Initally both of them are low be-
cause it takes sometime for sBHs and MGOs that are captured
by the disk to migrate to the MBH; and the two rates peaks
around t = 3× 105 yr and t = 106 yr, respectively, because the
migration timescale is inversely proportional to the star mass
mi. After the peak time, the rate of stars captured by the disk
is in equilibrium with the corresponding EMRI rate, and both
of them steadily decrease with time ∝ t−0.5, which is the typ-
ical behavior of diffusion processes with absorbing boundary
conditions. We find the wet EMRI rate of sBHs in the equilib-
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-disk
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FIG. 7. The surface number density Σ(r) of disk-component sBHs
at different times for the two different AGN disk models.

rium state is higher than the dry EMRI rate by O(102 − 103)
for the fiducial model, which is consistent with the result of
the slow disk capture scenario in our previous work (Fig. 10
of Ref. [44]), though the detailed time dependence does not
match exactly because we approximated the effect of density
waves as inclination-independent and neglected the contribu-
tion from dynamical friction in the previous work, while we
have used more refined prescription of star-disk interaction
[Eq. (28)] and self-consistent calculation of the disk capture
rate [Eq. (40)] in this work. In the loss-cone channel, the
EMRI rate of MGOs is largely suppressed compared to sBHs
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because MGOs benefit little from the mass segregation (see
Figs. 1 and 2), while in the disk channel, the EMRI rate of
MGOs is lower than that of sBHs by a factor of ∼ msbh/mmgo
in the equilibrium state (Fig. 6). As a result, we find the wet
EMRI rate of MGOs in the equilibrium state is higher than the
dry rate by O(103 − 104) for the fiducial model.

As shown in Fig. 4, the migration timescale of a sBH in
an AGN disk peaks around r ∼ 102M•, where the GW emis-
sion start to dominate over other processes. As a result, a
number of sBHs aggregate around this radius due to a traf-
fic jam (4th panel of Fig. 5). For clarity, we show the sur-
face number density of disk-component sBHs Σ in Fig. 7 at
different times. Compared with the β-disk, more sBHs ag-
gregate around r ∼ 102M• in the fiducial α-disk because of
slower migration speed. A similar result (with slightly higher
surface number densities) was obtained in our previous work
[77] though the disk capture rate was not calculated from first
principles.

Similar to the fiducial model, we initialize a stellar clus-
ter of a MBH with mass in the range of (105 − 107) M�,
evolve the MBH+cluster system for T0 = 5 Gyr, then turn on
an accretion disk around the MBH and initialize the cluster-
component and disk-component distributions, and continue
the evolution for Tdisk. The average wet EMRI rates of sBHs
and MGOs

Γ̄wet =
1

Tdisk

∫ Tdisk

0
Γemri,diskdt , (45)

are summarized in Table I. For long disk lifetime Tdisk & 107

yr, the wet EMRI rates of sBHs and MGOs are higher for
heavier MBHs because more sBHs and MGOs are available
around heavier MBHs. For short disk lifetime Tdisk = 106

yr, the trend reverses for M• & 106M� because longer migra-
tion timescale in AGN disks (& Tdisk) around heavier MBHs
hinders the sBHs and MGOs captured by the AGN disk from
migrating to the vicinity of the MBH and becoming EMRIs.
In comparison with the dry channel, we find the wet EMRI
rate of sBHs is usually higher by O(101 − 103) and the wet
EMRI rate of MGOs is usually higher by O(103 − 104).

IV. DETECTION PROSPECTS

In addition to the generic EMRI rates per MBH/AGN ob-
tained in the previous two sections, a few extra pieces of infor-
mation are needed for calculating the LISA detectable EMRI
rate: the mass function of MBHs dN•/dM• and the fraction of
MBHs living a stellar cusp which is supposed to be destroyed
during a MBH merger following a previous galaxy merger.

Following Ref. [37], we consider two MBH mass functions
in the range of (104, 107)M�,

f•,−0.3 :
dN•

d log M•
= 0.01

(
M•

3 × 106M�

)−0.3

Mpc−3 ,

f•,+0.3 :
dN•

d log M•
= 0.002

(
M•

3 × 106M�

)+0.3

Mpc−3 ,

(46)

where f•,−0.3 is an approximation to the mass function in the
model assuming MBHs are seeded by Pop-III stars and grow
via accretion and mergers [88], and f•,+0.3 is purely a phe-
nomenological model [89].

In the frame of observers on the earth, the differential dry
and wet EMRI rates are written as

d2Rdry

dM•dz
=

1
1 + z

dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γ̄dry(M•; Np) ,

d2Rwet

dM•dz
=

fAGN

1 + z
dN•
dM•

dVc(z)
dz

Ccusp(M•, z)Γ̄wet(M•;M) ,
(47)

where z is cosmological redshift, Vc(z) is the comoving vol-
ume of the universe up to redshift z, Ccusp(M•, z) is the frac-
tion of MBHs embedded in a stellar cusp, where we use the
same Ccusp(M•, z) function as in [37] for models with MBH
mass function f•,−0.3 and take Ccusp(M•, z) = 1 for models
with MBH mass function f•,+0.3. Γ̄wet(M•;M) is the average
wet EMRI rate (Table I) and we conservatively take the AGN
fraction as fAGN = 1%.

In consistent with Ref. [37], we parametrize the average dry
EMRI rate of sBHs as

Γ̄sbh
dry(M•; Np) = Cdep(M•; Np)Cgrow(M•; Np)Γsbh

lc (M•) , (48)

where we take the number of prompt infalls per EMRI as Np =

10 (Fig. 2), the generic rate

Γsbh
lc (M•) = Γ0

(
M•

106M�

)−0.19

, (49)

with Γ0 ∈ (30, 300) Gyr−1 [37, 45], and two correction fac-
tors are correction from possible depletion of sBHs available
Cdep(M•; Np) and correction capping the MBH mass growth
via accreting sBHs (from both prompt infalls and EMRIs)
Cgrow(M•; Np), respectively. Though there is uncertainty of
a factor of O(10) in the generic rate Γsbh

lc , we will see that the
uncertainty does not propagate to the average rate Γ̄sbh

dry with
the two corrections. The depletion correction is formulated as

Cdep = min.
{

Tdep

Trlx
, 1

}
, (50)

where Tdep is the depletion timescale of sBHs residing in the
MBH influence sphere (rc = 2M•/σ2)

Tdep =
Σmsbh

(1 + Np)Γsbh
lc msbh

, (51)

assuming the total mass of sBHs in the influence sphere is
Σmsbh = 0.06M• , and the relaxation timescale at r = rc is

Trlx =

(
σ

20 km/s

) (
rc

1 pc

)2

Gyr . (52)

The MBH growth correction comes from requiring the MBH
mass grows no more than 1/e via accreting sBHs,

Cgrow = min.
{

e−1 M•
∆M•

, 1
}
, (53)
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TABLE I. Average EMRI rates (Gyr−1) of sBHs and MGOs per AGN, assuming sBHs and MGOs are produced from SN explosion with equal
numbers.

AGN disk M•/M� (Γ̄mgo
wet , Γ̄

sbh
wet)Tdisk=106yr (Γ̄mgo

wet , Γ̄
sbh
wet)Tdisk=107yr (Γ̄mgo

wet , Γ̄
sbh
wet)Tdisk=108yr

α-disk 1 × 107 (0.1 × 103, 4.1 × 104) (1.2 × 104, 4.9 × 104) (6.7 × 103, 1.7 × 104)
4 × 106 (0.7 × 103, 9.0 × 104) (1.2 × 104, 3.7 × 104) (4.7 × 103, 1.2 × 104)
1 × 106 (1.0 × 104, 4.4 × 104) (7.4 × 103, 1.3 × 104) (2.5 × 103, 4.3 × 103)
4 × 105 (1.1 × 104, 1.7 × 104) (4.3 × 103, 4.5 × 103) (1.5 × 103, 1.4 × 103)
1 × 105 (2.7 × 103, 1.6 × 103) (1.1 × 103, 0.6 × 103) (0.5 × 103, 0.3 × 103)

β-disk 1 × 107 (4.6 × 103, 9.3 × 104) (1.3 × 104, 5.1 × 104) (6.7 × 103, 1.7 × 104)
4 × 106 (7.3 × 103, 1.1 × 105) (1.3 × 104, 3.8 × 104) (4.7 × 103, 1.2 × 104)
1 × 106 (1.5 × 104, 4.8 × 104) (7.6 × 103, 1.4 × 104) (2.5 × 103, 4.3 × 103)
4 × 105 (1.2 × 104, 1.8 × 104) (4.4 × 103, 4.9 × 103) (1.5 × 103, 1.4 × 103)
1 × 105 (3.7 × 103, 3.2 × 103) (1.1 × 103, 0.8 × 103) (0.5 × 103, 0.3 × 103)

TABLE II. Forecasted Total and LISA detectable (with SNR≥ 20) EMRI rates of sBHs and MGOs in the redshift range 0 < z < 4.5 assuming
sBHs and MGOs are produced from SN explosions with equal numbers. For the wet channel, we have assumed a conservative AGN fraction
fAGN = 1% throughout the universe.

Wet EMRIs f• AGN disk Tdisk [yr] Total rates of (MGOs, sBHs) [yr−1] LISA detectable rates of (MGOs, sBHs) [yr−1]
f•,−0.3 α-disk 106 (1900, 6400) (50, 480)

107 (1400, 2500) (24, 130)
108 (540, 860) (10, 54)

β-disk 106 (2700, 8200) (65, 530)
107 (1400, 2600) (24, 150)
108 (540, 860) (10, 54)

f•,+0.3 α-disk 106 (110, 1000) (3, 34)
107 (180, 470) (1, 10)
108 (71, 160) (< 1, 3)

β-disk 106 (200, 1300) (5, 38)
107 (190, 500) (2, 11)
108 (71, 160) (< 1, 3)

Dry EMRIs f• Total rates of (MGOs, sBHs) [yr−1] LISA detectable rates of (MGOs, sBHs) [yr−1]
f•,−0.3 (79, 1300) (1, 120)
f•,+0.3 (3, 130) (< 1, 10)

with

∆M• = msbh(1 + Np)Cdep(M•,Np)Γsbh
lc (M•,Np)Temri(M•) ,

(54)
and

Temri =

∫
dt

dt
dz

Ccusp(M•, z) (55)

is the total duration when a MBH lives in a stellar cusp.
With these two corrections, we find the average EMRI rate

of sBHs is well fitted by

Γ̄sbh
dry(M•; Np = 10)

= min.

26
(

M•
105M�

)
, 30

(
M•

106M�

)−0.19
 Gyr−1 .

(56)

with little dependence on the generic rate Γ0 as long as it is
higher than 30 Gyr−1, because the average rate is in fact de-
termined by the number of sBHs available around MBHs and
the MBH growth limit via accreting sBHs. For the average
EMRI rate of MGOs, we simply take it as Γ̄

mgo
dry (M•) ≈ 1 Gyr−1

(Fig. 3).
With all the elements for calculating the differential EMRI

rates ready [Eq. (47)], we calcuate the total EMRI rates of

MGOs and sBHs from the two channels and the LISA de-
tectable EMRI rates. We first sample the EMRI sources ac-
cording to the differential rates [Eq. (47)], then compute the
EMRI waveform using the Augment Analytic Kludge [90–92]
and the expected signal-to-ratio (SNR) by the LISA detector
(see all the source sampling and SNR computation details in
the previous work [45]). The forecast results are listed in Ta-
ble II. For the well-motivated MBH mass function f•,−0.3, we
expect LISA to detect ∼ 1 mass-gap EMRIs, O(102) sBH EM-
RIs from the dry channel, O(10− 102)× ( fAGN/1%) mass-gap
EMRIs, and O(102 − 103) × ( fAGN/1%) sBH EMRIs from the
wet channel per year. For the less optimistic MBH mass func-
tion f•,+0.3, the expected detection numbers are overall lower
by a factor of O(10).

V. SUMMARY AND DISCUSSION

A. Summary

In the dry EMRI formation channel, the formation rate of
mass-gap EMRIs is strongly suppressed compared with EM-
RIs of sBHs, because sBHs are heavier and accumulate closer
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to MBH due to the mass segregation effect and therefore easier
to form EMRIs (Fig. 2). In the wet channel, the EMRI forma-
tion turns out to be much more efficient than in the dry channel
because the capture of compact objects onto the accretion disk
and subsequent inward migration along the disk are highly ef-
ficient in transporting compact objects [44, 45]. Both the cap-
ture rate onto to disk and the migration speed along the disk
are linearly proportional to the compact object mass, so that
the formation rate of wet mass-gap EMRIs in the equilibrium
state is suppressed by a factor of ∼ mmgo/msbh assuming their
abundances are equal (δsbh = δmgo). As a result, we find the
wet EMRI rate of sBHs per AGN is higher than the dry rate
per MBH by O(101 − 103), and the wet EMRI rate of MGOs
per AGN is higher than the dry rate per MBH by O(103−104).
Accounting for the AGN fraction fAGN = O(10−2 − 10−1), the
wet channel turns out to the dominant channel of mass-gap
EMRI formation. As for the LISA detection prospects, we ex-
pect LISA to detect no more than ∼ 1 dry mass-gap EMRIs,
and O(10 − 102) × ( fAGN/1%) wet mass-gap EMRIs per year
for the physically motivated MBH mass function f•,−0.3. For
the less optimistic MBH mass function f•,+0.3, the expected
detection numbers are lower by O(10) (Table II).

B. Discussion

As shown above, the expected number of EMRI detections
(denoted as Dsbh and Dmgo) are sensitive to the unknown MBH
mass function, while the ratio Dsbh/Dmgo is not, which can
be used as a more robust probe to the MGO abundance and
origin.

If LISA detects Dmgo dry mass-gap EMRIs and Dsbh dry
EMRIs of sBHs per year, we can infer the relative abundance
of MGOs and sBHs within nuclear stellar clusters as

δmgo

δsbh
≈

Dmgo/Dsbh

Rmgo
sbh

, (57)

where Rmgo
sbh ≈ 1/120 is the ratio of expected detection num-

bers of two different EMRIs assuming MGOs and sBHs are
of the same abundance (Table II). In a similar way making
use of Eq. (57), one can again infer the relative abundance
of MGOs δmgo/δsbh from detections of wet EMRIs, where
Rmgo

sbh = (1/10 − 1/5) (Table II) varies little over all differ-
ent model parameters for the parameter space we considered.
The inferred relative abundance δmgo/δsbh can be used to con-
strain the SN explosion mechanisms, where the delayed SN
explosion mechanism predicts δmgo/δsbh → 1 while the rapid
explosion mechanism predicts δmgo/δsbh → 0 [6].

An excess of mass-gap EMRI detection by LISA is a sig-
nature of MGOs of exotic origins (e.g., PBHs [16, 18, 19, 93,
94]). If these MGOs are of primordial origin, their abundance
around MBHs may be further used to constrain the mass frac-
tion of PBHs in dark matter (DM) fmgo := Ωmgo/ΩDM. This
constraint sensitively depends on the DM distribution around
MBHs, which is poorly understood theoretically. We consider
two extremal cases: (1) DM around MBHs traces baryons
with the DM to baryon ratio ΩDM/ΩB; (2) the DM density
around MBHs follows the NFW profile [95].

In case (1), the abundance of MGOs relative to stars is

δmgo

δstar
=

fmgoΩDM

(1 − fgas)ΩB

mstar

mmgo
, (58)

where fgas is the mass fraction of gas in baryons and fmgo is
formulated as

fmgo = (1 − fgas)
δsbh

δstar

Dmgo/Dsbh

Rmgo
sbh

ΩB

ΩDM

mmgo

mstar

= 6 × 10−4(1 − fgas)
δsbh/δstar

10−3

Dmgo/Dsbh

Rmgo
sbh

ΩB/ΩDM

0.2
mmgo/mstar

3
(59)

where we have used Eq.(57).
In case (2), the DM abundance around MBHs is usually

much lower, with the total DM mass with the MBH influence
radius MDM(< rc) ≈ 0.3%M• (see Appendix C for details).
For comparison, the total star mass is Σmstar(< rc) ≈ 2M•
and the total mass of astrophysical MGOs is Σmmgo(r < rc) ≈
0.6%M•× (δmgo/10−3), i.e., the DM abundance around MBHs
is comparable with that of astrophysical MGOs. In this case,
it is unlikely to observe excess of mass-gap EMRIs. There-
fore, an excess of mass-gap EMRI detection by LISA would
disfavor the NFW distribution of MGOs as DM.

Many other proposals to explain GW190814-like events in-
volve hierachical mergers, e.g., in young stellar clusters [23],
triple systems [26], AGN disks [28], etc. If the abundance
of MGO production can be realibly estimated in these sce-
narios, the rate of mass gap EMRIs may also be used to test
these models. For example, as young stellar clusters are not
expected to host massive black holes, if they are the only
places that MGOs are produced, we should expect the mass-
gap EMRI rate to be minimized.

One working assumption we used is no mass change of
MGOs in AGN disks. As shown in Fig. 4, the typical mi-
gration timescale of MGOs is ∼ 106 yr, which is much shorter
than the Salpeter timescale 5×107 yr (mass doubling timescale
with the Eddington accretion rate). But the accretion rate of
MGOs/sBHs in AGN disks is uncertain [77, 96]. If gas accre-
tion onto MGOs was highly super-Eddington and largely in-
creased their masses, identifying the distorted mass gap is less
straightforward, and the commonly used techniques of search-
ing for mass-gap features in the mass spectrum of LIGO/Virgo
events [8] would also be valuable for our purpose.
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Appendix A: Diffusion and advection coefficients in the
Fokker-Planck equation (9)

In Refs. [65, 66, 68], the diffusion and the advection coef-
ficients of a single-species cluster have been derived in detail.
Following Refs. [33, 69], we extend the them to multi-species
cases. We first define auxiliary functions:

F( j)
0 (E, r) = (4πm j)2 ln Λ

∫ E

−∞

dE′ f̄ j(E′) ,

F( j)
n (E, r) = (4πm j)2 ln Λ

∫ φ(r)

E
dE′

(
φ − E′

φ − E

)n/2

f̄ j(E′) ,

(A1)
where n ≥ 1, j is the index labelling different star species, ln Λ

the Coulomb’s logarithm which we take as ln Λ = 10, and

f̄ j(E) :=
∫ 1

0
f j(E,R)dR . (A2)

With these auxiliary functions, the coefficients are written as

D(i)
EE =

∑
j

2
3P

∫ r+

r−

dr
vr

v2(F( j)
0 + F( j)

3 ) ,

D(i)
E =

∑
j

−
2
P

∫ r+

r−

dr
vr

F( j)
1 ×

mi

m j
,

D(i)
ER =

∑
j

4
3P

R
∫ r+

r−

dr
vr

(
v2

v2
c
− 1

)
(F( j)

0 + F( j)
3 ) ,

D(i)
RR =

∑
j

4
3P

R
J2

c

∫ r+

r−

dr
vr

{
2

r2

v2

v2
t

(
v2

v2
c
− 1

)2

+ v2
r

 F( j)
0

+ 3
r2

v2 v2
r F( j)

1 +
r2

v2

2v2
t

(
v2

v2
c
− 1

)2

− v2
r

 F( j)
3

}
,

D(i)
R =

∑
j

−
4
P

R
v2

c

∫ r+

r−

dr
vr

(
1 −

v2
c

v2

)
F( j)

1 ×
mi

m j
,

(A3)
where i (similar to j) is also the star species index, vt = J/r is
the tangential velocity, and vc(E) is the velocity of a circular
orbit with energy E.

Appendix B: Diffusion and advection coefficients in the
Fokker-Planck equation (32)

Following Refs. [33, 65, 66, 69], we derive the diffusion
and advection coefficients in the Fokker-Planck equation (32)
in this section. Consider a star m with orbital energy E and
velocity v changes its energy by ∆E and velocity by ∆v due to
a scattering with a field star ma. In the following orthonormal
basis,

v̂ = v/v ,

Ĵ = J/J = r × v/J ,
ŵ = v × J/|v × J | ,

(B1)

the velocity change is written as

∆v = ∆v‖v̂ + ∆v⊥ = ∆v‖v̂ + ∆vJĴ + ∆vwŵ . (B2)

As a result, the changes in energy and angular momentum are

∆E = −
1
2

(∆v‖)2 −
1
2

(∆v⊥)2 − v∆v‖ , (B3)

and

∆J = r × ∆v

= J
(
∆v‖
v
−

vr

vt

∆vw

v

)
Ĵ + J

∆vJ

v

(
vr

vt
ŵ − v̂

)
:= ∆J‖ + ∆J⊥ ,

(B4)

with ∆J⊥ = J(∆vJ/v)
√

1 + (vr/vt)2 = J(∆vJ/vt) = r∆vJ and

∆J := |J + ∆J | − J = J
∆v‖
v
− rvr

∆vw

v
+

1
2

r2(∆vJ)2

J
. (B5)

For µ = cos ι = Jz/J with Jz the z-component angular mo-
mentum, its change is

∆µ =
∆Jz

J
− µ

∆J
J

=
∆vJ

v

(
vr

vt
ŵ − v̂

)
· ẑ −

µ

2
r2(∆vJ)2

J2 . (B6)

Defining 〈∆X〉t := 〈∆X〉
∆t |∆t→0 and 〈∆X∆Y〉t := 〈∆X∆Y〉

∆t |∆t→0
(where 〈〉 is ensemble average over scatterings a star has ex-
perienced), it is straightforward to see

〈∆E〉t = −
1
2
〈(∆v‖)2〉t −

1
2
〈(∆v⊥)2〉t − v 〈∆v‖〉t ,

〈(∆E)2〉t = v2 〈(∆v‖)2〉t ,

〈∆µ〉t = 〈
∆vJ

v
〉

t

(
vr

vt
ŵ − v̂

)
· ẑ −

µ

2
r2

J2 〈(∆vJ)2〉t ,

〈(∆µ)2〉t = 〈

(
∆vJ

v

(
vr

vt
ŵ − v̂

)
· ẑ

)2

〉
t

= 〈
(∆vJ)2

v2

(
v2

r

v2
t

+ 1
)

sin2 ι

2
〉

t

=
1 − µ2

2
r2

J2 〈(∆vJ)2〉t ,

〈∆E∆µ〉t = −

(
vr

vt
ŵ − v̂

)
· ẑ 〈∆v‖∆vJ〉t ,

(B7)

accurate to quadractic order in ∆v.
In the case of spherical symmetry, coefficients 〈∆v〉t and

〈∆v∆v〉t has been derived by Binney and Tremaine [69] (as-
suming the field stars ma are symmetrically distributed in the
azimuthal direction in the rest frame of particle m) as

〈∆v‖〉t = −κ
m + ma

ma

∫ v

0
dva

v2
a

v2 fa(va) ,

〈(∆v‖)2〉t =
2
3
κ

(∫ v

0
dva

v4
a

v3 fa(va) +

∫ ∞

v
dvava fa(va)

)
〈(∆v⊥)2〉t =

2
3
κ

(∫ v

0
dva

(
3v2

a

v
−

v4
a

v3

)
fa(va) + 2

∫ ∞

v
dvava fa(va)

)
(B8)
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〈∆v⊥〉t = 0 and 〈∆v‖∆vJ〉t = 0, with κ = (4πma)2 ln Λ.
It is straightforward to extend the above results to the non-
spherical symmetry case, with the replacement fa(va) →
f̄a(va, θ), where

f̄a(va, θ) :=
1

2π

∫ 2π

0
dη fa(va, µ = sin θ cos η)dη , (B9)

and θ is the polar angle w.r.t. the z-axis.
With 〈∆v〉t and 〈∆v∆v〉t ready, the derivation of coeffi-

cients in the Fokker-Planck equation (32) is parallel to the
previous section and we outline it as follows. Define func-
tions

F( j)
0 (E, θ) = (4πm j)2 ln Λ

∫ E

−∞

dE′ f̄ j(E′, θ),

F( j)
n (E, r, θ) = (4πm j)2 ln Λ

∫ φ(r)

E
dE′ f̄ j(E′, θ)

(
φ − E′

φ − E

)n/2

,

(B10)
with n ≥ 1 and

f̄ j(E, θ) :=
1

2π

∫ 2π

0
dη f j(E, µ = sin θ cos η)dη . (B11)

With these auxiliary functions, the local diffusion/advection
coefficients D̂(E,R, r, θ) (which depend on energy E, normal-
ized angular momentum R, and spatial coordinates r and θ)
are

D̂(i)
EE =

∑
j

1
3

v2(F( j)
0 + F( j)

3 ) ,

D̂(i)
E =

∑
j

−F( j)
1 ×

mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1
3

v−2
t (2F( j)

0 + 3F( j)
2 − F( j)

4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1
3
∂

∂µ
v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µE = 0 .

(B12)

In general, the orbital coordinates (r, θ) of a star orbit with
semi-major axis a(E) and eccentricity e are specified by

r =
a(1 − e2)

1 + e cosψ′
, cos θ = cos(ψ′ + φ) sin ι , (B13)

with φ ∈ [0, 2π] specifying the pericenter location in the az-
imuthal direction, and ψ′ ∈ [0, 2π] is the orbital phase w.r.t the
pericenter. With orbit average, we obtain

D̄(E,R, µ, φ) =
2
P

∫ r+

r−

dr
vr

D̂(E,R, r, θ) . (B14)

After ensemble average over R and φ, we arrive at the final
form D(E, µ) = 〈D̄(E,R, µ, φ)〉R,φ.

In fact, we find circular orbits is a good approximation in
calculating the coefficients. For circular orbits, the orbital
equation is simplified as

r = rc(E), cos θ = cosψ′ sin ι (B15)

and the diffusion/advection coefficients arising from scatter-
ings with the cluster-component stars

D(i)
EE =

∑
j

1
3π

∫ π

0
dψ′v2(F( j)

0 + F( j)
3 ) ,

D(i)
E =

∑
j

−
1
π

∫ π

0
dψ′F( j)

1 ×
mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1

3π

∫ π

0
dψ′v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1

3π
∂

∂µ

∫ π

0
dψ′v−2

t (2F( j)
0 + 3F( j)

2 − F( j)
4 ) ,

D(i)
µE = 0 .

(B16)
With the same approximation, the diffusion/advection coef-

ficients arising from scatterings with the disk-component stars
are

D(i)
EE =

∑
j

1
3
εv2(G( j)

0 + G( j)
3 ) ,

D(i)
E =

∑
j

−εG( j)
1 ×

mi

m j
,

D(i)
µµ =

∑
j

1 − µ2

4
1
3
εv−2

t (2G( j)
0 + 3G( j)

2 −G( j)
4 ) ,

D(i)
µ =

∑
j

1 − µ2

4
1
3
∂

∂µ
εv−2

t (2G( j)
0 + 3G( j)

2 −G( j)
4 ) ,

D(i)
µE = 0 .

(B17)

where ε(h, ι) = min{1, 2
π

arcsin( h
ι
)} ≈ 2

π
arcsin( h

h+ι
) is fraction

of the orbit lying inside the disk component, and

G( j)
0 (E) = (4πm j)2 ln Λ

∫ E

−∞

dE′g j(E′),

G( j)
n (E, r) = (4πm j)2 ln Λ

∫ φ(r)

E
dE′g j(E′)

(
φ − E′

φ − E

)n/2

,

(B18)
with n ≥ 1.

Appendix C: DM NFW profile

If DM density around a MBH follows the NFW profile [95]

ρDM(r) =
ρs

r
Rs

(
1 + r

Rs

)2 , (C1)

the total DM mass within radius r is written as MDM(< r) =

4πρsR3
sG(c), with concentration c := r/Rs and G(c) = ln(1 +

c) − c/(1 + c), where ρs and Rs are the characteristic density
and radius, respectively. For relating ρs and Rs to the MBH
mass M•, we need the aid of a commonly used cutoff radius
within which the average DM density is 200 times the critical
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density of the universe ρcrit, i.e.,

M200 = 4πρsR3
sG(c200),

ρs

ρcrit
=

200
3

c3
200

G(c200)
, (C2)

As found in Ref. [97], M200 and M• are correlated with

M•
107M�

≈

(
M200

1012M�

)1.65

. (C3)

For low redshift, the concentration c200 has a weak depen-
dence on the mass M200 [98]

log10 c200 = 0.905 − 0.101 log10(M200/1012h−1M�) . (C4)

Combining the above three equations, we find the total mass
of DM within the influence radius rc is MDM(< rc) ≈ 0.3%M•
for M• ∈ (105, 107)M�.
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