
Black-Hole Perturbation Plus Post-Newtonian Theory: Hybrid Waveform for Neutron
Star Binaries

Xuefeng Feng,1, 2, 3, ∗ Zhenwei Lyu,3, 4 and Huan Yang3, 4, †

1Institute of Applied Mathematics, Academy of Mathematics and Systems Science,
Chinese Academy of Science, Beijing 100190, China

2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3University of Guelph, Guelph, Ontario N1G 2W1, Canada

4Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

We consider the motion of nonspinning, compact objects orbiting around a Kerr black hole with
tidal couplings. The tide-induced quadrupole moment modifies both the orbital energy and out-
going fluxes, so that over the inspiral timescale there is an accumulative shift in the orbital and
gravitational wave phase. Previous studies on compact object tidal effects have been carried out
in the Post-Newtonian (PN) and Effective-One-Body (EOB) formalisms. In this work, within the
black hole perturbation framework, we propose to characterize the tidal influence in the expansion
of mass ratios, while higher-order PN corrections are naturally included. For the equatorial and
circular orbit, we derive the leading order, frequency dependent tidal phase shift which agrees with
the Post-Newtonian result at low frequencies but deviates at high frequencies. We also find that
such phase shift has weak dependence (≤ 10%) on the spin of the primary black hole. Combining
this black hole perturbation waveform with the Post-Newtonian waveform, we propose a frequency-
domain, hybrid waveform that shows comparable accuracy as the EOB waveform in characterizing
the tidal effects, as calibrated by numerical relativity simulations. Further improvement is expected
as the next-to-leading order in mass ratio and the higher-PN tidal corrections are included. This
hybrid approach is also applicable for generating binary black hole waveforms.

I. INTRODUCTION

Inspiraling and coalescing compact-object binary sys-
tems, including black holes and/or neutron stars, are
important sources of ground-based gravitational waves
(GW) detectors, e.g. LIGO[1] and Virgo[2]. Up to the
O3 observation run, Advanced LIGO and Virgo have de-
tected more than thirty binary black hole mergers, two
binary neutron star mergers and one possible black hole-
neutron star merger. The number of events is expected
to increase significantly as Advanced LIGO and Virgo
reach their design sensitivities.

Constructing GW waveform models are crucial for ef-
ficiently detecting these binary systems as well as accu-
rately estimating their source properties based on the
observation data. Since it is computationally expen-
sive to numerically solve Einstein’s equation (and as-
sociated hydrodynamical equations if a neutron star is
involved) for the binary evolution across the entire ob-
servation frequency band, especially with the large pa-
rameter space needed to characterize these binaries, sev-
eral (semi)-analytical or phenomenological methods have
been developed to complement the information from nu-
merical simulations and generate reliable waveforms [3–
6].

These methods generally follow different avenues of
analytical approximations in modelling the binary black
hole inspiral waveform. For example, the low-frequency
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inspiral dynamics and associated waveform are treated
within the Post-Newtonian (PN) framework in the “Phe-
nom” waveform series [3, 7]. At higher frequency certain
calibrations with numerical waveforms are performed to
bridge the gap between the PN inspiral description with
the black hole ringdown. On the other hand, the PN
expansion is restructured in the Effective-One-Body for-
malism [8] through a mapping to an effective spacetime of
the relative motion, so that the resumed PN results may
be better attached to the strong-gravity regime. Calibra-
tion with numerical relativity data has also been used to
improve the accuracy of EOB waveforms.

When the mass ratio between the secondary and the
primary black hole is small, we can view the smaller
black hole as a particle moving in a perturbed spacetime
of the primary black hole, where the metric perturba-
tion and associated dynamical effects can be evaluated
in a systematic expansion in the mass ratio. This black-
hole-perturbation approach is the leading solution to pro-
duce waveforms of extreme mass-ratio inspirals (EMRIs),
which are important sources for space-borne GW detec-
tors such as LISA [9]. Given this expansion scheme, it
is then natural to ask what is its regime of applicability
in mass ratios? Interestingly, recent studies [6, 10–22]
on this question have revealed a rather surprising result:
the EMRI-based waveform may be even applicable for
equal-mass binaries. In particular, for the equatorial and
circular orbit, the GW phase can be written as the post-
adiabatic expansion[6]

ψ(ω) =
ψ0(ω)

η
+ ψ1(ω) + ηψ2(ω) + ... , (1)

where ω is the orbital angular frequency and η =
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m1m2/(m1 +m2)2 is the symmetric mass ratio, the func-
tion ψi(ω) is the coefficient of the order ηi term. When
the mass ratio is extreme, the symmetric mass ratio is
almost the same as the mass ratio q = m1/m2 ≤ 1. The
comparison with numerical relativity waveforms shows
that, across the entire inspiral frequency range, high or-
der terms (starting from ψ2 in the expansion) only con-
tribute ≤ 2 radians phase shift even for equal-mass black
hole binaries (with η = 1/4) for most of the frequency
range, except near the transition regime from inspiral to
plunge 1. This observation indicates that Eq. (1) may be
a fast-converging series even for equal-mass binaries, so
that the first several terms may suffice to produce accu-
rate waveforms.

If at least one of the compact objects in the binary is a
neutron star, tide-induced neutrons star deformation has
to be included into the binary dynamics. This effect was
first computed in [25] for the leading order term in the
waveform, with higher order PN corrections worked out
in [26]. Later on these PN tidal corrections were incor-
porated in the EOB framework, for both the equilibrium
tide [27] and the dynamic tide [28].

In this work, we adopt the black hole perturbation
point of view, and evaluate the induced quadrupole mo-
ment of a neutron star moving in a perturbed spacetime
of the primary black hole. In the local rest frame (or
more precisely, within the “asymptotically Cartesian and
mass centered” coordinates [29] 2) of the neutron star
and in adiabatic approximation, the induced quadrupole
moment is

Qab = −λEab (2)

where Eab is the tidal tensor in the local spacetime and
λ is the tidal Love number. In the equilibrium tide ap-
proximation, λ is assumed to be a constant; with dynam-
ical tide included, λ can be thought as a function of the
orbital frequency. Additional subtlety comes in if the or-
bital evolution cross one or more mode resonances, where
residual free mode oscillations will be present after these
resonances and Eq. (2) breaks down [31]. For the pur-
pose of this study, since the primary mode (f-mode) gen-
erally has frequency higher than the inspiral frequency,
we will assume that the adiabatic approximation holds in
the entire inspiral frequency range. Discussions on mode
resonances and their detectability with LIGO and future
detectors can be found in [31–35].

In the black hole perturbation picture, the metric
perturbation generated by the less massive black hole
can be expanded in power laws of the mass ratio h =
h1q + h2q

2 + ..., with q = m1/m2, and the less massive

1 It is expected that an additional correction of order η−1/5 must
be introduced to account for the transition effects [23, 24].

2 In the multipole expansion picture discussed in [30], the central
object can be fully relativistic. As the multipole moments are
derived in the asymptotic zone, Eq. (2) can be viewed as the
definition for the relativistic Love number λ.

black hole m1 can be viewed as moving along geodesics of
the spacetime with metric gKerr +h [36]. This mass ratio
expansion of h justifies the mass ratio expansion of φ in
Eq. (1). When the less massive object is a neutron star,
its motion can be viewed as a perturbed geodesic of the
spacetime gKerr +h. This deviation from geodesic mainly
comes from multipole interaction between the star and
its environmental tidal field, while h is sourced by the
monopole (“the point-mass” piece), quadrupole, and all
higher order multipole parts of the stress-energy tensor.
For simplicity, we truncate the multipole expansion at
the quadrupole order and use the Mathisson-Papapetrou-
Dixon prescription [37] to construct the stress-energy ten-
sor of the star. To the linear order in λ, the tidal energy
of the object and the tidal induced gravitational radia-
tion flux are all 1/q or 1/η order lower than those of a
point mass, so that the correction to the gravitational
phase starts at q−2 or η−2 order. Both q and η are eli-
gible choices of expansion parameters in the small mass
ratio limit, but they will give rise to rather different re-
sult as we truncate the series and apply it in the compa-
rable mass ratio limit. For binary black hole waveforms
it seems η is a more efficient expansion parameter [6],
but for tidal corrections the optimal choice is yet to be
determined.

The leading-PN-order tidal correction to the gravita-
tional wave phase is

δψ = − 9

16

v5

µM4

[(
11m2

m1
+
M

m1

)
λ1 + 1↔ 2

]
(3)

with µ being the reduced mass m1m2/M = ηM and M
is the total mass M = m1 + m2. This motivates us to
write down the tide-induced phase shift contributed by
the less massive star (star “1”) as

ηψBP,1 ≈ λ1(q−1ψ
(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ
(n)
BP) . (4)

which naturally includes all PN corrections, with the sub-
script “BP” denoting “Black Hole Perturbation”. In par-

ticular, the ψ
(−1)
BP term can be obtained considering the

tidal deformation of the neutron star due to the back-
ground Kerr spacetime of the primary black hole, and

ψ
(0)
BP corresponds to the extra tidal deformation induced

by h1. If the companion is also a neutron star, its tidal
contribution to the waveform can be obtained by replac-
ing q by q−1, λ1 by λ2 and keeping η to be the same in
Eq. (4). As a result, the total tidal correction is

ηψBP =ηψBP,1 + ηψBP,2

=λ1(q−1ψ
(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ
(n)
BP)

+ λ2(qψ
(−1)
BP + ψ

(0)
BP +

∑
n≥1

ηnψ
(n)
BP) . (5)

Strictly speaking, if both compact objects are neutron
stars, there is no horizon absorption of the gravitational
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wave flux. Such effect enters the dynamics at 2.5 rela-
tive PN order for rotating black holes and 4PN for non-
rotating black holes [38]. The overall contribution to the
phase is less than 0.1 for the point-mass motion terms,
which means for the tidal correction it should be even
smaller. We shall neglect this effect in the waveform

construction. Notice that ψ
(0)
BP(ω) becomes the leading

order term for star “2”. In fact, it can be evaluated by
computing the deformation of a star by an orbiting point
mass, and then determining the extra energy change and
gravitational wave flux due to the star deformation. This
offers an alternative (and likely easier) way to compute

ψ
(0)
BP(ω).
The tide-induced phase shift can also be expanded in

the velocity v =
√
M/r (M is the total mass and r is the

orbital separation) within the PN formalism:

ψPN = λv5(ψ0PN + v2ψ1PN + v3ψ1.5PN + v4ψ2PN + ...) .
(6)

Theoretically speaking, after summing over all PN terms
in Eq. (6) and all mass ratio terms in Eq. (5), ψBP and
ψPN should agree. In practice, ψBP and ψPN are approx-
imately obtained in truncated expansions in the Black
Hole Perturbation Theory and Post-Newtonian Formal-
ism respectively, as illustrated in Fig.1. In order to better
capture the tidal effect with these two independent ex-
pansions, we propose to construct a hybrid waveform by
using

ψhyd = ψPN + ψBP − ψovp , (7)

where ψovp denotes the contribution from the overlap
regime of the Post-Newtonian and Black Hole Perturba-
tion methods (the green regime in Fig.1). As a result, the
difference between this hybrid waveform and the “true”
waveform come from the blank space in Fig. 1. As the
expansion orders in Post-Newtonian and Black Hole Per-
turbation methods increase, the blank space shrinks and
we shall obtain a better approximated waveform. Notice
that this construction applies not only to double neutron
star and black hole-neutron star binaries discussed here,
but black hole binaries as well. It will be interesting to
perform the exercise combining the EMRI-inspired wave-
form with the PN waveform for binary black holes, and
compare with other resumed waveforms such as the EOB
templates.

In this work we truncate the series with only ψ
(−1)
BP

in ψBP and up to ψ2PN in ψPN. The accuracy of the re-
sulting hybrid waveform is comparable to the state of the
art EOB waveform for the tidal correction, for the numer-
ical waveforms that we have used for comparison. The
waveform is naturally expressed in the frequency domain,
which allows fast waveform evaluation. The systematic
error is understood as the blank space in the phase di-
agram as in Fig. 1. The waveform model is also easily
extendible when higher order correction terms in ψBP and
ψPN are available. We plan to update the hybrid wave-

form with ψ
(0)
BP in the future, and possibly with inspiral-

to-plunge corrections and higher multipoles if necessary.

q−1 q0 q1 q2

ηψBP

0

1

1.5

2

ψPN

FIG. 1. ψBP and ψPN approximately obtained in truncated
expansions in the Black Hole Perturbation Theory and Post-
Newtonian Formalism. The green and blue parts denote ψBP,
the green and yellow parts denote ψPN, and then the overlap
of ψBP and ψPN is green part.

The paper is organized as follows. In Section II, we
derive the explicit equations of motion of an extended
body with nonzero quadrupole moment moving on a cir-
cular and equatorial orbit in the Kerr spacetime. A
series of conserved quantities discussed here. In Sec-
tion III, we review the Teukolsky formalism where the
asymptotic behavior of the homogeneous solution, wave-
forms and fluxes, and the quadrupole source term are
shown. In Section IV, we construct the hybrid waveform
and compare it with numerical relativity waveforms, as
well as the EOB waveform. We summarize in Section
V. Throughout this paper, we adopt geometrical units,
G = c = 1, where G denotes the gravitational constant
and c the speed of light, respectively. The metric signa-
ture is (−,+,+,+)

II. CONSERVATIVE ORBITAL MOTION

In this section, we consider a nonspinning body (with
nonzero quadrupolar moment) moving in the Kerr space-
time, focusing on the case of circular, equatorial orbits.
Without including the gravitational radiation reaction,
the orbital motion is conservative and easily solvable. We
focus on the conservative piece of motion in this section,
and leave the discussion on radiative effects to Sec. III.

The Boyer-Lindquist coordinates (t, r, θ, φ) are used in
the analysis, in which the Kerr metric takes the following
form:

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4aMrsin2θ

Σ
dtdφ

+
Σ

∆
dr2 + Σ dθ2

+sin2θ

(
r2 + a2 +

2a2Mrsin2θ

Σ

)
dφ2, (8)
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where M is the mass of black hole, a is the spin parameter
with |a| ≤M , and

∆ = r2 − 2Mr + a2, Σ = r2 + a2cos2θ. (9)

The Kerr spacetime has two Killing vector fields given by
∂t and ∂φ.

A. Equations of motion

The motion of a test body with multipolar structure
is discussed in detail in [39]. Following the same for-
malism, considering the influence of quadrupole moment-
curvature coupling, the equation of motion of a spinning
extended body reads

Dpa
dτ

= −1

2
Rabcdu

bScd − 1

6
∇aRbcdeJbcde, (10)

DSab

dτ
= 2p[aub] +

4

3
R[a

cdeJ
b]cde (11)

where ua denotes the 4-velocity of the body along its
world line (normalized to uaua = 1), τ is an affine pa-
rameter of the orbit, Rabcd denotes the Riemann tensor of
a Kerr spacetime, pa is the momentum, and Jabcd is the
quadrupole tensor which obeys the following symmetries:

Jabcd = J [ab][cd] = Jcdab, (12)

Jabcd + Jbcad + Jcabd = 0. (13)

If we only consider the gravito-electric tidal field, neglect-
ing the gravito-magnetic tidal field and quadrupole de-
formations induced by the spin, the induced quadrupole
moment is:

Qab = −λEab, (14)

where λ is the tidal Love number and Eab =
1

m1
2Racbdp

cpd is the tidal tensor of the spacetime. In

addition, the tidal quadrupole deformations Jabcd is re-
lated to Qab by

Jabcd = −3m0

m3
1

p[aQb][cpd], (15)

where

m2
1 = −papa ,

m0 = −paua ,

In this paper, we suppose that the extended body has no
spin, then the 4-momentum can be obtained from (11):

pa = m0u
a +

4

3
ubR

[a
cdeJ

b]cde. (16)

The difference between m0 and m1 is at higher multipole
order than the quadrupole[39]. As a result, we shall not
distinguish m0 from m1 in this work, as we only consider
effects by the quadrupole moment. The stress-energy

tensor of the test body can be written in the following
form:

T ab =

∫
dτ

[
u(apb)

δ(4)√
−g

+
1

3
Rcde

(aJb)edc
δ(4)√
−g

−2

3
∇d∇c

(
Jd(ab)c δ(4)√

−g
)]
. (17)

B. Conserved Quantities

A test particle moving in the Kerr spacetime has four
conserved quantities: energy, angular momentum along
the symmetry axis, the Carter constant and its rest mass.
As a result, its motion is integrable for generic geodesic
orbits. When the internal quadrupole moment is in-
cluded, we can still construct conserved quantities for ex-
tended bodies in the Kerr spacetime based on the Killing
vector fields. According to [40, 41], the quantity

Qξ = paξ
a (18)

is conserved if ξa is a Killing vector, ∇(bξa) = 0. We
then decompose energy and angular momentum as E =
E0(r) + Et(r) and J = J0(r) + Jt(r) , where Et(r) and
Jt(r) are proportional to the tidal Love number λ. As
only the first order tidal effects included, we just need
to substitute E0(r) and J0(r) into Eq. (15) to obtain
the momentum p and quadrupole moment Jdabc .For the
Kerr spacetime, there are two killing fields ∂t, ∂φ, which
lead to

E =− pt

=
1

r

(
2Mauφ − 2Mut + rut

)
− 9M2λ

m5
0r

10

(
J0 − E0a

)
×(

E0J0 − E2
0a+m2

0a
)(

2J2
0 − 4E0Ja+ 2E2

0a
2 +m2

0r
2
)
,

(19)

J = pφ

=
1

r

[
2Maut − uφ

(
2Ma2 + ra2 + r3

) ]
+

9M2λ

m5
0r

10

(
J0 − E0a

){
2J4

0 − 6E0J
3
0a+m2

0(a2 + r2)

+ J2
0 [6E2

0a
2 +m2

0(2a2 + 3r2)]

− J0[2E3
0a

3 + E0m
2
0a(4a2 + 5r2)]

}
. (20)

As both E, J are conserved and the geodesic contribu-
tions E0, J0 are not, one can obtain E0, J0 at any stage
of the orbits as functions of E, J from the above equa-
tions. Notice that both m0 and m1 are no longer constant
with the presence of quadrupole deformation. In fact, as
shown in [41], the following mass-like quantity µ as

µ = m0 +
λ

4
EabE

ab +O(λ2) (21)
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is approximately constant if we neglect the second order
tidal effects. It is straightforward to show that Eq. (21)
implies

m0

µ
=1− 3M2λ

2m5
0r

10

[
m4

0r
4 + 3m2

0r
2(J0 − E0a)2

+ 3(J0 − E0a)4
]

+O(λ2) . (22)

C. Orbital description

In the Kerr spacetime, the motion of a generic test
body with internal quadrupolar moment is no longer sep-
arable as there are only three conserved quantities: E,
J and µ. However, for equatorial orbits the inclination
angle being a constant: θ = π/2, and the motion in r
and φ directions are still separable. In particular, if the

orbit is circular, all conserved quantities can be expressed
as functions of r. With this understanding, we shall ex-
plicitly write down the orbital equation of motion up to
linear order in λ for equatorial orbits. According to the
expressions for E, J in (19), (20) and m2

1 = m2
0 = −papa,

they are(
dt

dτ

)
=

E

m0r2

[
(r2 + a2)2

∆
− a2

]
+

aJ

m0r2

(
1− r2 + a2

∆

)
+ F0t(r, a, E, J)

:= F00(r, a, E, J) + F0t(r, a, E, J), (23)(
dφ

dτ

)
=

J

m0r2
+

aE

m0r2

(
r2 + a2

∆
− 1

)
− a2J

m0r2∆

+ F3t(r, a, E, J)

:= F30(r, a, E, J) + F3t(r, a, E, J), (24)

(
dr

dτ

)2

=

[
E(r2 + a2)− aJ

]2
m4

0r
4

−
∆
[
r2 + (J − aE)2

]
m4

0r
4

+ F1t(r, a, E, J)

:= F10(r, a, E, J) + F1t(r, a, E, J), (25)

where

F0t(r, a, E, J) = − 9M2λ

m6
0r

11∆

(
J − Ea

)[
2J2 − 4EJa+ 2E2a2 +m2

0r
2

][
2J2Ma+ E2a(2Ma2 + a2r + r3)

−EJ(4Ma2 + a2r + r3)−m2
0ar(a

2 − 2Mr + r2)

]
, (26)

F3t(r, a, E, J) =
9M2λ

m6
0r

11∆

(
J − Ea

)[
2J2 − 4EJa+ 2E2a2 +m2

0r
2

][
− 2E2Ma2 + EJa(4M − r)

+J2(−2M + r) +m2
0r(a

2 − 2Mr + r2)

]
, (27)

F1t(r, a, E, J) =
18M2λ

m7
0r

13

(
J − Ea

)2[
2J2 − 4EJa+ 2E2a2 +m2

0r
2

][
− 4EJMa+ J2(2M − r)−m2

0r∆

+E2(2Ma2 + a2r + r3)

]
. (28)

The terms F00, F10, F30 represent the geodesic motion
in the Kerr spacetime, and F0t, F1t, F3t account for the
leading-order tidal correction 3. Strictly speaking, the
adiabatic tide approximation (Eq. (14)) breaks down for
eccentric orbits as the environmental tidal tensor Eab
varies on the orbital timescale. The f-mode excitation
and evolution have to be included into the equations of
motion [33]. However, as the main purpose of this pa-
per is to generate waveforms for circular orbits, where the

3 There are no F20, F2t terms here as the motion in the θ direction
is not present for equatorial orbits.

adiabatic approximation still holds, we can view Eq. (23),
Eq. (24) and Eq. (25) as effective equations of motions
that are introduced as intermediate steps to find the cir-
cular orbits.

In the remaining part of the paper, for the sake of con-
venience, we introduce the following dimensionless vari-
ables:

r → r

M
, J → J

Mµ
, E → E

µ
(29)

to replace the unnormalized variables. In this convention,
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we can rewrite Eq. (25) in the form:

(
1

r

dr

dτ

)2

= αE2 − 2β
J

r
E + γ

J2

r2
− δm

2
0

µ2
, (30)

where

α = 1 +
a2(2 + r)

r3
, β =

2a

r2

δ = 1 +
a2 − 2r

r2
, γ = −1 +

2

r
. (31)

Therefore, we know that Eq. (30) describes a one-
dimensional motion within a potential well. For circu-
lar orbits, we require the radial velocity to be zero at
the equilibrium radius and the radial acceleration to be
zero at the same location. Based on these two require-
ments, we can obtain the conserved E, J as functions of
the equilibrium radius r:

E(r) =
1− 2v2 + av3

√
1− 3v2 + 2av3

+λ

(
4r
√

1− 3v2 + 2av3

)−1[
a2g(r) + 2af(r)v

+
(
− 2 + r

)(
2f(r) + g(r)r

)]
, (32)

J(r) =
1− 2v2 + av3

√
1− 3v2 + 2av3

+λ

[
4
(
1− 3v2 + 2av3

)]−3/2
1

r5/2

{
2a4g(r)

+a3v
[
3g(r)(r − 1)r + 4f(r)

]
+a2

[
g(r)r((r − 1)r − 4) + 2f(r)(r − 7)

]
+3a

[
g(r)(r − 2)(r − 1)r + 4f(r)

]√
r

+(r − 3)r2
[
g(r)(r − 2)r + 2f(r)

]}
, (33)

where

v =

√
1

r
,

f(r) =
3λ

r8 (2av + r − 3)
2

[
− 3a4 +

6a3

v
− a2r(3r + 1)

+
2a

v5
− r2

(
r2 − 3r + 3

) ]
, (34)

g(r) =− 18λ

r9 (2av + r − 3)
2

[
− 5a4 +

12a3

v
− 2a2r(2r + 3)

+
4a

v5
− r2

(
r2 − 2r + 2

) ]
. (35)

In order to compute the gravitational wave fluxes, we
also need to evaluate the orbital frequency (only prograde

orbits are considered here):

Ωφ =
dφ

dt
=
dφ/dτ

dt/dτ
=

1

r3/2 + a

{
1+

F3t(r, a, E, J)

F30(r, a, E, J)
− F0t(r, a, E, J)

F00(r, a, E, J)
−

(EtJ0 − E0Jt)r
2∆[

2aE0 + J0(−2 + r)
][
− 2aJ0 + E0r3 + a2E0(2 + r)

]}.
(36)

If we substitute Eq. (36) into Eq. (32) and Eq. (33), we
can obtain E(Ω) = E0(Ω)+Et(Ω) and J = J0(Ω)+Jt(Ω),
where E0(Ω), Et(Ω), J0(Ω) and Jt(Ω) are the geodesics
and tidal parts of energy and angular momentum respec-
tively.

We have incorporated these explicit tidal corrections in
Eq. (32) and Eq. (36) in an open source Teukolsky code
“Gremlin” within the “Black Hole Perturbation Toolkit”
project[42], which provides many useful toolboxes for de-
scribing the motion and wave emission of EMRIs. This
tide-modified Gremlin package allows us to evolve the
trajectory of a point particle in a Kerr spacetime, while
counting for the tide-induced corrections. In Sec. III we
use the same code to compute the gravitational radiation
associate with the particle motion.

D. Dynamic tide

In the low frequency limit, the stars answer to the adia-
batic environmental tidal fields by deforming themselves
according to Eq. (14), with λ being a constant. This sce-
nario is often referred as the “equilibrium tide”. In the
late part of the inspiral, although the orbital frequency Ω
is still lower than the frequency ωf of the ` = 2 f-mode,
the gradual excitation of the f-mode in the pre-resonance
stage is no longer negligible. In fact, as shown in [28], ef-
fectively we need to replace the constant (dimensionless)
Love number

λ =
2k2R

5

3G
(37)

by

kdyn
l = kl

[
al +

bl
2

(
QDTm=l

QATm=l

+
QDTm=−l
QATm=−l

)]
(38)

where

QDTm
QATm

=
ω2
f

ω2
f − (mΩ)2

+
ω2
f

2(mΩ)2εfΩ′f (φ− φf )

±
iω2
f

(mΩ)2√εf
e±iΩ

′
f εf (φ−φf )2

∫ √εf (φ−φf )

−∞
e∓iΩ

′
fs

2

ds .

(39)

where the coefficients a2 = 1/4, b2 = 3/4(only ` = 2 is
considered here), Ω2 = M/r3 and εf is the ratio between
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the orbital timescales and the gravitational radiation re-
action timescales, Ω′f = 3/8 is a rescaled derivative in
frequency, φ is the orbital phase and φf denotes the or-
bital phase evaluation at ω = ωf . These quantities can
be written as a function of r:

εf =
256M2/3ω

5/3
f µ

5 |m|5/3
, (40)

φ− φf =
1

32M3/2 µ

[(√
M |m|
ω

)5/3

− r5/2

]
, (41)

which can be found in [28]. In the above two equa-
tions, we do not use the dimensionless variables defined
in Eq. (29) in order to express them explicitly.

Note here the star still oscillates at the same frequency
of the external tidal force, which is why a frequency-
dependent Love number can be introduced here. If the f-
mode frequency were within the inspiral frequency range,
the post-resonance star also oscillates with a frequency
component ω = ωf [31]. Such free f-mode oscillations
have been observed in numerical simulations of eccentric
binary neutron stars [33].

In Sec. IV we show the performance of hybrid waveform
models with the dynamic tide effect implemented. The
dynamic tide model generally fits better with the numer-
ical waveforms in the late inspiral stage, as demonstrated
in [28].

III. RADIATION

Neutron stars develop nonzero quadrupole moments
because of the gravitational tidal fields from their com-
panions. As a result, the stress-energy of the star is
modified by the tidal deformation (Eq. (17)). This extra
piece of stress energy also generates additional gravita-
tional wave radiation, which in turn affects the orbital
evolution. In this section we first review the relevant
Teukolsky formalism and then compute the tide-induced
gravitational wave radiation.

A. The Teukolsky equation

The wave emission by an extended body moving in
the Kerr spacetime can be described by the Teukolsky
equation [43], which is separable in the frequency domain.
In particular, consider the variable

ψ4 =
1

(r − ia cos θ)4

∫ ∞
−∞

dω
∑
lm

Rlmω(r)−2S
aω
lm(θ)eimφ−iωt

(42)
which is a Newmann-Penrose quantity defined by con-
tracting the Weyl tensor Cabcd with tetrad vectors: ψ4 =
−Cabcdnam̄bncm̄d. The Kinnersley tetrad components

are being used [44]

na =
1

2
(
∆

Σ
, 1, 0,−a∆ sin2 θ

Σ
)

m̄a =
ρ√
2

(ia sin θ, 0,Σ,−i(r2 + a2) sin θ) (43)

At any given frequency ω, the wave equation is separable.
In particular, the eigen-solution of the angular part of the
Teukolsky equation defines the spin-weighted spheroidal
harmonic −2S

aω
lm(θ), which is normalized by∫ π

0

|−2S
aω
lm(θ)|2 sin θdθ = 1. (44)

We have listed relevant properties of the spin-weighted
spheroidal harmonics and their derivatives in Appendix
A. The radial function Rlmω(r) obeys the radial Teukol-
sky equation:

∆2 d

dr

(
1

∆

dRlmω
dr

)
− V (r)Rlmω(r) = −Tlmω(r).(45)

where

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λlm , (46)

and ∆ = r2 − 2Mr + a2, K = (r2 + a2)ω −ma, λlm ≡
Alm − 2amω + a2ω2 − 2, where Alm is the eigenvalue of
the angular Teukolsky equation.

The radial Teukolsky equation is an ordinary differen-
tial equation, which can be solved by using the Green
function method. To achieve this goal, one needs to first
identify two independent solutions of the homogeneous
Teukolsky equation: RHlmω and R∞lmω, which have the fol-
lowing asymptotic behaviour:

RHlmω = Btrans
lmω ∆2e−ipmr

∗
, r → r+

RHlmω = Bref
lmωr

3eiωr
∗

+
Binc
lmω

r
e−iωr

∗
, r →∞ (47)

and

R∞lmω = Cup
lmωe

ipmr
∗

+ Cref
lmω∆2e−ipmr

∗
, r → r+

R∞lmω = Ctrans
lmω r

3eiωr
∗
, r →∞ . (48)

where pm = ω −ma/2Mr+ and the tortoise coordinate
r∗ is:

r∗(r) = r +
2Mr+

r+ − r−
ln
r − r+

2M
− 2Mr−
r+ − r−

ln
r − r−

2M
,

where the outer and inner horizon radii are r± = M ±√
M2 − a2. Based on the Green’s functions method, the

general solution of the Teukolsky equation with a source
can be written in this form:

Rlmω(r) = ZHlmω(r)R∞lmω(r) + Z∞lmω(r)RHlmω(r) , (49)
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where

ZHlmω(r) =
Btrans
lmω

2iωBinc
lmωC

trans
lmω

∫ r

r+

dr′
RHlmω(r′)Tlmω(r′)

∆(r′)2
,

Z∞lmω(r) =
1

2iωBinc
lmω

∫ ∞
r

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2
. (50)

As the neutron star we consider here moves along cir-
cular and equatorial orbits, there is only one frequency
in this setup ω = Ωφ. In particular, the mth harmonic
has a frequency of

ωm = mΩφ. (51)

Then we have

ZH,∞lmω =
∑
m

δ(ω − ωm)ZH,∞lmωm
(52)

The energy fluxes going out to infinity and black hole
horizon can be obtained as:(

dE

dt

)r→∞
GW

=
∑
lm

|Z∞lmωm
|2

4πω2
m

. (53)

(
dE

dt

)r→r+
GW

=
∑
lm

αlm
|ZHlmωm

|2

4πω2
m

(54)

where

αlm =
256(2Mr+)5pm(p2

m + 4ε2)(p2
m + 16ε2)ω3

m

|Clm|2
, (55)

with ε =
√
M2 − a2/4Mr+ and

|Clm|2 =
[
(λlm + 2)2 + 4aωm − 4a2ω2

m

]
[λ2
lm + 36maωm

− 36a2ω2
m] + (2λlm + 3)

[
6a2ω2

m − 48maωm
]

+ 144ω2
m(M2 − a2). (56)

As mentioned earlier, the boundary condition for gravi-
tational waves on the star’s surface is different from the
one for black hole horizon. As a result, the horizon flux
should not be accounted for if both objects are neutron
stars in the binary system. However, it is a 4PN effect
for Schwarzschild black holes and 2.5PN effect for Kerr
black holes, and the associated phase shift is less than
0.1 even for the point mass motion. Therefore in charac-
terizing the tidal effect and the extra gravitational wave
emission associated with tidal deformation, we shall not
consider the issue of the horizon fluxes in our paper.

B. Source term

In order to obtain the energy flux, we need to evaluate
the source term in Eq. (50). It is explicitly given by [45]:

Tlmω(r) = 4

∫
dΩ dt

Σ

ρ4
(B′2 +B∗′2 )−2 S

aω
lm(θ)e−imφeiωt ,

(57)

where the functions B′2 and B∗′2 are

B′2 =− ρ8ρ̄

2
L−1

[
ρ−4L0

(
ρ−2ρ̄−1Tnn

)]
+

∆2ρ8ρ̄

2
√

2
L−1

[
ρ−4ρ̄2J+

(
ρ−2ρ̄−2∆−1Tnm̄

)]
,

B∗′2 =
∆2ρ8ρ̄

2
√

2
J+

[
ρ−4ρ̄2∆−1L−1

(
ρ−2ρ̄−2Tnm̄

)]
− ∆2ρ8ρ̄

4
J+

[
ρ−4J+

(
ρ−2ρ̄Tm̄m̄

)]
. (58)

Here, ρ = −1/(r − ia cos θ), ρ̄ = −1/(r + ia cos θ). The
differential operators J+ and Ls are

J+ = ∂r +
iK(r)

∆
,

Ls = ∂θ +m csc θ − aω sin θ + s cot θ ,

L†s = ∂θ −m csc θ − aω sin θ + s cot θ . (59)

The stress-energy tensor for an extended body moving in
the Kerr spacetime, as described in Eq. (17), is given by

T ab(x) =

∫
dτ

[
u(ap(b)δ(4) +

1

3
Rcde

(aJb)edcδ(4)

− 2

3
∇d∇c(Jd(ab)cδ(4))

]
. (60)

=

∫
dτ

[
u(ap(b) +

1

3
Rcde

(aJb)edc − Jdaec∂cΓbde

+ Γade

(
ΓdcfJ

febc + ΓecfJ
dfbc

)
+ Γbde

(
ΓdcfJ

faec + ΓacfJ
dfec

)]
δ[x− z(τ)]√

−g

+ ∂d

(
ΓdcfJ

fabc + ΓacfJ
dfbc + ΓbcfJ

cafd

)
1√
−g

+ ∂d∂c
{
Jdabcδ[x− z(τ)]

} 1√
−g

(61)

:=

∫
dτ Aab

δ[x− z(τ)]√
−g

+ ∂d
{
Bbabδ[x− z(τ)]

} 1√
−g

+ ∂d∂c
{
Jdabcδ[x− z(τ)]

} 1√
−g

, (62)

where we have converted the covariant derivatives into
coordinate partial derivatives with Christoffel symbols,
which are more convenient for numerical evaluation.
Here the delta function δ[x− z(τ)] is defined as

δ[x− z(τ)] = δ[t− t(τ)]δ[r − r(τ)]δ[θ − θ(τ)]δ[φ− φ(τ)].
(63)

Jdabc in Eq. (60) is a tensor, then we have also intro-
duced additional notations for Jdabc to account for var-
ious pieces of the source terms, as modified by the tidal
field

A{nn} := Aabnanb, (64)
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FIG. 2. The energy flux computed for an equal-mass, black
hole-neutron star binary with k2(Ω = 0) = 0.07346, m0 =
1.4M�, Mωf = 0.1349(1 + q)/2 and Γ = 2 polytropic equa-
tion of state, and a similar binary black hole system with the
same mass and starting from the same initial location. The
flux dE/dt is normalized by η2.

B
{α}
{nn} := Bαabnanb, J

{αβ}
{nn} := Jαabβnanb. (65)

where α, β = t, r, θ, φ, and

B
{r}
{drnn} := Brab∂r(nanb) , B

{θ}
{dθnn} := Bθab∂θ(nanb),

J
{tr}
{drnn} := J tabr∂r(nanb) , J

{tθ}
{dθnn} := J tabθ∂θ(nanb),

J
{rφ}
{drnn} := Jrabφ∂r(nanb) , J

{θφ}
{dθnn} := Jθabφ∂θ(nanb),

J
{rr}
{ddrnn} := Jrabr∂r∂r(nanb) , J

{θθ}
{ddθnn} := Jθabθ∂θ∂θ(nanb).

J
{rθ}
{drnn} := Jrabθ∂r(nanb) , J

{rθ}
{dθnn} := Jrabθ∂θ(nanb)

J
{rθ}
{drdθnn} := Jrθabθ∂r∂θ(nanb). (66)

Apart from nana, we can also define components for Jdabc

by contracting Jdabc with n(am̄b) and m̄am̄b following
similar convention as the above equations. The explicit
forms of these components are given in the Appendix B.

C. Sample evolution

We incorporated the additional tide-related source
terms into the Gremlin code, and evaluate the gravita-
tional wave energy flux as a function of the orbital fre-
quency. Formally we can write the total power as

P = Ppm + Ptide = η2

(
dE

dt

)pm

+ η
λ

m5
0

(
dE

dt

)tide

.

(67)

The η2 factor within the point mass term is related to
the fact that metric perturbation generated by the point
mass is proportional to the mass ratio, so that the flux
is proportional to η2. The tidal correction of the grav-
itational wave flux is generated by the beating of the
wave generated by the point mass with the additional

wave generated by the quadrupole deformation of the
star. Both Ėpm and Ėtide can be computed given the
initial conditions of the system. The values can be used
in other systems with different η and λ.

In Fig. 2, we plot the total power versus the point
mass power for a non-spinning, equal-mass binary neu-
tron star system. The same type of system is also used in
Sec. IV for waveform comparison. The additional energy
flux contributed by the tidal deformation (Eq. (67)) be-
comes more important at higher frequencies. Although
the fluxes are computed within the extreme-mass-ratio
limit, the results are applied in the comparable mass ra-
tion limit for the waveform construction.

IV. WAVEFORM CONSTRUCTION

With the preparation in Sec. II and Sec. III on the con-
servative and dissipative pieces of the tidal effects, we are
ready to present the tidal correction to the gravitational
waveform. We shall focus on the gravitational wave phase
as it is the most sensitively measured quantity within a
parameter estimation process.

Assuming adiabatic circular orbit evolution, the mo-
tion at any instantaneous moment can be approximately
viewed as a circular orbit with frequency Ω. The gravita-
tional wave phase, as a function of the orbital frequency,
follows

d2ψ

dΩ2
= 2

dE/dΩ

P
. (68)

As we are interested in the tidal correction, we shall write
the total phase ψ as ψpm + ψtide, the total energy as
E = Epm + Etide, and expand Eq. (68) so that only
linear order terms in λ are kept:

d2ψtide

dΩ2
= 2

(
dEtide/dΩ

P
− P tide dE/dΩ

P 2

)
, (69)

where we plug in Etide and P tide evaluated in Sec. II and
Sec. III. In the Post-Newtonian theory, Etide and P tide

can be computed to various PN orders, which lead to
the PN tide waveform at different orders [26]. Notice
that the gravitational wave phase increases twice as fast
as the orbital phase, because we focus on the dominant
piece of the waveform with ` = 2,m = 2.

A. Hybrid waveform

The black hole perturbation calculation discussed in
Sec. II and Sec. III gives rise to an EMRI-inspired wave-
form, which is fully capable of describing the gravita-
tional wave emission in the highly relativistic regime.
On the other hand, the PN tide waveform, although be-
ing less accurate in the strong-gravity regime, does not
require an expansion in the mass ratio. In order to com-
bine the merits of these two different approaches, we have
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proposed a hybrid version of the waveform, as explained
in Eq. (7) and depicted in Fig. 1. By definition, this hy-
brid waveform is accurate if the mass ratio is small or
if the binary separation is large. Similar to the spirit
of the EOB construction, we anticipate that by ensur-
ing matching at small mass ratio and weak gravity limit,
the hybrid method still provides reasonably accurate de-
scription for comparable mass-ratio systems in the strong
gravity regime. This point has to be checked with numer-
ical relativity waveforms, as discussed in Sec. IV B.

In constructing the hybrid waveform one needs to sub-
tract the waveform contribution in the overlap regime,
as explained in Fig. 1. In fact, it also serves as a san-
ity check that the PN waveform taking a mass ratio ex-
pansion should agree with the EMRI-inspired waveform
taking a PN expansion. In light of Eq. (69), it suffices
to show that Etide and P tide obtained in the PN the-
ory have the same small mass limit as their counterparts
found in Sec. II and Sec. III, expanded in various PN
orders. Such a consistency check is explicitly performed
in Appendix. C.

B. Numerical comparison

In order to evaluate the performance of the black hole
perturbation and hybrid methods in constructing wave-
forms, we adopt an equal mass, binary neutron star wave-
form from the SXS waveform catalog [46]. For this par-
ticular waveform, the neutron stars have a polytropic
equation of state P = KρΓ, with Γ = 2, K = 101.45.
The neutron star mass is m = 1.4M� and the radius is
R = 14.4km. The phase error is approximately ∼ 1 rad
at the peak of the strain [28].

For comparison purpose, we also compute the EOB
prediction of the tidal phase correction, with dynamic
tide included, in addition to the black hole perturbation
result. As shown in Fig. 3, the hybrid waveform that in-
tegrates both the black hole perturbation and 2PN meth-
ods, performs significantly better than the black hole
perturbation result alone. This hybrid waveform also
has comparable performance as the EOB-dynamic tide
waveform. In Fig. 4, we consider a black hole-neutron
star system with mass raio 2:1 and the property of he
neutron star is the same as Fig. 2 and Fig. 3. We observe
slightly better agreement with the numerical wavefrom
for the hybrid waveform is in this case, but the difference
is within the phase uncertainty of the numerical wave-
form. Apart from these two scenarios, more detailed and
systematic comparison and characterization are needed
to address the phase error of the hybrid waveform.

This hybrid waveform is naturally expressed in the fre-
quency domain, which is convenient for fast waveform
evaluation. To further improve the waveform accuracy to
meet the requirements of third-generation gravitational
wave detectors, high-order corrections (q0 and η1) in the
black hole perturbation method should be evaluated to
reduce the empty space in Fig. 1. As numerical wave-

FIG. 3. Tidal phases of gravitational perturbation theory,
the hybrid method, the EOB framework and numerical rela-
tivity simulation for an equal-mass, black hole-binary neutron
system. The property of neutron star is the same as Fig. 2.

FIG. 4. Tidal phases of gravitational perturbation theory,
the hybrid method, the EOB framework and numerical rel-
ativity simulation for black hole-binary neutron system with
mass ratio 2:1. The property of neutron star is the same as
Fig. 2.

forms are required for validation and calibration pur-
poses, we also likely require future numerical waveforms
with O(0.1) phase error, i.e., a factor of ten improvement
from current waveforms.

Interestingly, the black hole perturbation approach
also offers straightforward evaluation of the spin-
dependence of the tidal terms, which are absent in the
current PN or EOB waveforms. According to Fig. 5, the
influence of the spin parameter of the black hole on the
tide-induced phase shift is less than 10% in the entire
inspiral range. Such additional phase shift may be less
important for binary neutron stars, as they are generally
believed to be slowly spinning according to the observa-
tion of galactic pulsar binaries [47]. Nevertheless they
should be relevant for black hole-neutron star binaries if
we want to control the waveform phase error to be below
0.1, especially for the ones with a low-mass black hole
[48].
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FIG. 5. Tidal phases in the black hole perturbation waveform
with spin ranging from a = 0 to a = 0.99 for six equal-mass,
black hole-neutron star systems. The property of neutron star
is the same as Fig. 2.

V. CONCLUSION

A recent program in connecting scattering amplitude
calculations to two-body problems in General Relativity
has triggered an evolution in Post-Newtonian and Post-
Minkowski (PM) Theory [49–51]. Higher order PN and
PM corrections to the equations of motion have been dis-
covered with this new approach. On the other hand, the
development of second-order (in mass ratio) gravitational
self force is being carried out and implemented in circu-
lar orbits in Schwarzschild [52]. It is expected to correct
phase error on the O(1) order, which is on the compara-
ble level of the environmental effects [53–56]. The hybrid
approach proposed here naturally integrates these two
independent expansions to achieve a better description
of binary motions in the comparable mass ratio, strong
gravity and high velocity regime. In this work we have
incorporated the PN expansion of the tidal correction up
to 2PN order and the leading-order term in the mass-
ratio expansion, which gives rise to a hybrid waveform
with comparable accuracy to the state of the art EOB
waveform.

Moving forward, it should be straightforward to in-

clude the ψ2.5PN term [57] and ψ
(0)
1BP corrections. In par-

ticular, as ψ
(0)
1BP is the leading-order tidal term for the

more massive object, it is easier to consider the prob-
lem of a point mass orbiting around a star to evaluate

ψ
(0)
1BP. In Fig. 5, we observe that the discrepancy between

the black hole perturbation waveform and the numerical
waveform monotonically increases as the binary evolves.

The inclusion of ψ2.5PN term and ψ
(0)
1BP may help alle-

viate the disagreement. In the future, it is feasible to

also work out the ψ
(1)
1BP and beyond-2PN corrections to

achieve better accuracy.
In [6], it is argued that for the comparison between

the numerical relativity binary black hole waveform and
the EMRI-inspired waveform, the discrepancy at large

orbital frequency might come from the breakdown of the
adiabatic approximation, so that the inspiral-to-plunge
transition has to be taken into account. However, in the
comparison performed here for the tidal effects, the dis-
crepancy never displays a sudden rise near the merger.
Therefore we do not expect the inspiral-to-plunge tran-
sition to be the main reason of disagreement found here.
Nevertheless, we may still include the transition in our
future investigation to see how it affects the waveform
construction.

On the other hand, higher-order in mass ratio terms
may be obtained by calibration with a set of numerical
waveforms [6]. Let us consider Eq. (5) as an example.

If both ψ
(−1)
1BP and ψ

(0)
1BP are known through black hole

perturbation calculations, we may truncate the summa-

tion up to n ≥ 1 and fit ψ
(1)
1BP, ..., ψ

(n)
1BP by comparing to

a series numerical waveforms with different mass ratios.
The obtained fitting formula and the associated wave-
form can be tested with another independent set of nu-
merical waveforms. The accuracy of this method relies
crucially on the accuracy of the calibration waveforms.
We plan to perform this analysis using more binary neu-
tron star and black hole-neutron star waveforms.

As Advanced LIGO continues to improve its sensitiv-
ity and especially with the third-generation gravitational-
wave detectors [58, 59], we should expect to observe a set
of high signal-to-noise-ratio (SNR) events, which will al-
low many important applications of precise gravitational
wave astronomy. The gain in SNR also poses strict re-
quirements on the modeling error of the waveforms, so
that the waveform systematic error is smaller than the
statistical error of these events. It has been shown that
for third generation detectors the mismatch error for nu-
merical relativity waveforms has to improve by one or-
der of magnitude. For semi-analytical waveforms an im-
provement of three orders of magnitude is necessary [60].
Significant new developments are required to bridge such
a large gap, and hopefully the hybrid method proposed
here will provide one avenue for exploration.
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Appendix A: Spheroidal harmonics

Even though some derivatives of the spin-weighted
spheroidal harmonics can be found in [61], we need some
other derivatives which we state them as follows:

∂θ−1Y km(θ)= (m csc θ − cot θ)−1Y km(θ)

−[k(k + 2)]1/20Y km(θ), (A1)

∂θ0Y km(θ)= m csc θ0Y km(θ)

−[k(k + 2)]1/21Y km(θ), (A2)

∂θ1Y km(θ)= m csc θ1Y km(θ)

−[(k − 1)(k + 2)]1/22Y km(θ), (A3)

S =

∞∑
k=lmin

bk∂θ−2Y km, (A4)

∂θS =(m cot θ csc θ + 2 csc2 θ)S

−
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2−1Y km(θ), (A5)

∂θ∂θS =(−m cot θ csc θ + 2 csc2 θ)S

+ (m cot θ csc θ + 2 csc2 θ)∂θS

−
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2∂θ−1Y km(θ),

(A6)

∂θL
†
1L
†
2S =

∞∑
k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/2∂θ0Y km(θ)

+ 2aω cos θL†2S + 2aω sin θ∂θL
†
2S

− 2(aω sin θ)aω cos θS − (aω sin θ)2∂θS,
(A7)

L†2S =aω sin θS −
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2−1Y km(θ)

(A8)

∂θL
†
2S =aω cos θS + aω sin θ∂θS

−
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2∂θ−1Y km(θ),

(A9)

L†1L
†
2S =

∞∑
k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/20Y km(θ)

+ 2aω sin θL†2S − (aω sin θ)2S (A10)
∂θ∂θL

†
2S =(−aω sin θ + 2aω sin θ)S

+ (aω cos θ + aωm− 2aω cos θ)∂θS

− (aω cos θ −m cot θ csc θ + csc2 θ)×
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2−1Y km(θ)

− (aω sin θ +m csc θ − cot θ)×
∞∑

k=lmin

bk[(k − 1)(k + 2)]1/2−1Y km

+

∞∑
k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/20Y km,

(A11)

∂θ∂θL
†
1L
†
2S =(−m cot θ csc θ)×

∞∑
k=lmin

bk[(k − 1)k(k + 1)(k + 2)]1/20Y km(θ)

+m csc θ

∞∑
k=lmin

bk[(k − 1)(k + 2)]1/2∂θ0Y km(θ)

−
∞∑

k=lmin

bk[(k − 1)k2(k + 1)2(k + 2)]1/2∂θ1Y km(θ)

− 2aω sin θL†2S + 2aω cos θ∂θL
†
2S

+ 2aω cos θ∂θL
†
2S + 2aω sin θ∂θ∂θL

†
2S

− 2a2ω2(cos2 θ − sin2 θ)S

− 2a2ω2 sin θ cos θ∂θS − 2a2ω2 sin θ cos θ∂θS

− (aω sin θ)∂θ∂θS. (A12)
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Appendix B: Source terms

Because we consider the first order tidal effects, the we can substitute E0 and J0 into the tensors Bdab and Jdabc.
The concrete components are

A{nn} =

[
Ja− E(r2 + a2)

]2
4mr4

+
λ(a2 + (−2 + r)r)2

4r11(−3 + 2av + r)3

[
− 18a4 +

a3

v

− 2a2r(31 + 3r) +
4a(3 + 4r)

v3
+ r2(9− 12r + r2)

]
(B1)

A{nm̄} =−
i(J − Ea)

[
Ja− E

(
r2 + a2

)]
2
√

2mr3
+

iλ

2
√

2 (2va+ r − 3)
3

(
1

r

)19/2 [
18va7

+
(33r + 17)a5

v
+ r(133− 97r)a4 +

(
17r2 + 48r − 139

)
a3

v3
+ r2

(
−39r2 + 84r − 17

)
a2

+

(
2r3 + 21r2 − 83r + 66

)
a

v5
+ r3

(
−2r3 + r2 + 15r − 18

)
− 60a6

]
, (B2)

A{m̄m̄} =
E
[
(r + 2)a2 + r3

]
− 2Ja

mr [(r − 2)r + a2]
− λ

r9 (2va+ r − 3)
3

[
30a5

v
− r(12r + 7)a4 +

4(11r − 20)a3

v3

− r2
(
r2 + 46r − 104

)
a2 +

2
(
4r2 − 2r − 15

)
a

v5
+ r3

(
r3 − 10r2 + 21r − 9

)
− 9a6

]
, (B3)

B
{t}
{nn} =

3λ
[
(r − 2)r + a2

]
8r9 (2va+ r − 3)

2

[
6va5 + 6ra4 +

(3r − 25)a3

v

+ 2r
(
3r2 − 5r + 5

)
a2 +

3
(
r2 − 5r + 4

)
a

v3
+ 2r3

(
r2 − 5r + 6

) ]
, (B4)

B
{t}
{nm̄} =− 3iλ

8
√

2r8 (2va+ r − 3)
2

[
6va6 + 6(r − 1)a5 − (3r + 19)a4

v

+ 2r
(
3r2 − 2r + 13

)
a3 − 2(4r + 5)a2

v3
+ 2r2

(
r3 − 2r2 + 3

)
a+

r2 − 5r + 6

v7

]
, (B5)

B
{t}
{m̄m̄} = 0, (B6)

B
{r}
{nn} =

3λ
[
(r − 2)r + a2

]2
8r10 (2va+ r − 3)

2

[
6a3

v
− r(3r + 1)a2 +

2a

v5
− r2

(
r2 − 3r + 3

)
− 3a4

]
, (B7)

B
{r}
{nm̄} =

3iλv17
[
(r − 2)r + a2

]
8
√

2 (2va+ r − 3)
2

[
6va5 +

2(3r + 4)a3

v

+ r(15− 13r)a2 +
2
(
r2 − 3

)
a

v3
− 3r2

(
r2 − 3r + 2

)
− 18a4

]
, (B8)

B
{r}
{m̄m̄} =− 3λ

4r8 (2va+ r − 3)
2

[
12a5

v
− r(3r + 10)a4 +

(11r − 15)a3

v3

− r2
(
r2 + 9r − 25

)
a2 +

(
3r2 − 5r − 6

)
a

v5
+ r3

(
−2r2 + 6r − 3

)
− 3a6

]
, (B9)
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B
{r}
{drnn} =

3λ
(
r − a2

) [
(r − 2)r + a2

]
2r11 (2va+ r − 3)

2

[
6a3

v
− r(3r + 1)a2

+
2a

v5
− r2

(
r2 − 3r + 3

)
− 3a4

]
, (B10)

B
{r}
{drnm̄} =− 3iλ

8
√

2r10 (2va+ r − 3)
2

[
− 42a6

v
+ 12r(2r − 1)a5 − 9(3r − 7)a4

v3

+ 2r2
(
6r2 − 20r − 1

)
a3 +

2
(
r2 + 5r − 3

)
a2

v5
+ 2r3

(
r3 − 10r2 + 21r − 12

)
a

+
3
(
r2 − 3r + 2

)
v9

+ 18a7

]
, (B11)

B
{r}
{drm̄m̄} =− 3λ

2r9 (2va+ r − 3)
2

[
− 6a5

v
+ r(3r − 2)a4 − 2a3

v5

+ r2
(
r2 − 9r + 19

)
a2 +

4(r − 3)a

v5
+ r3

(
−2r2 + 6r − 3

)
+ 3a6

]
, (B12)

B
{θ}
{nn} = B

{θ}
{nm̄} = B

{θ}
{m̄m̄} = B

{θ}
{dθnn} = B

{θ}
{dθnm̄} = B

{θ}
{dθm̄m̄} = 0, (B13)

B
{φ}
{nn} =

3λv19
[
(r − 2)r + a2

]
8 (2va+ r − 3)

2

[
r(9r − 25)a2 − 2(r − 5)a

v3

+ r2
(
3r2 − 13r + 12

)
+ 6a4

]
, (B14)

B
{φ}
{nm̄} =− 3iλ

8
√

2r8 (2va+ r − 3)
2

[
6va5 +

(9r − 19)a3

v

+ 2r(13− 4r)a2 +

(
3r2 − 5r − 10

)
a

v3
− 2(r − 3)r2 − 6a4

]
, (B15)

B
{φ}
{m̄m̄} = 0, (B16)

J
{tt}
{nn} =−

3λ
[
(r − 2)r + a2

]
16r8 (2va+ r − 3)

2

[
2(r + 5)a3

v
+ 2r

(
r2 + 2r − 6

)
a2

+
2(r − 3)a

v5
+ r4(2r − 3)− a4

]
, (B17)

J
{tt}
{nm̄} =−

3iλa
(
r2 + a2

)
8
√

2r6
, (B18)

J
{tt}
{m̄m̄} =− 3λ

8r6 (2va+ r − 3)
2

((r − 2)r + a2)

[
− 2(r + 4)a5

v
+ r

(
−2r2 + 6r + 15

)
a4

+
4
(
r2 − 2r − 2

)
a3

v3
+ r3

(
−2r2 + 5r + 4

)
a2 +

2(3r − 8)a

v9
+ r5(9− 4r) + a6

]
, (B19)
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J
{tr}
{nn} =− 3λ (va+ r)

8r8 (2va+ r − 3)
2

[
2a5

v
+ r(15− 8r)a4 +

4(r − 2)a3

v3
+

2(r − 2)2a

v5

+ r2
(
−7r2 + 26r − 24

)
a2 − (r − 2)2r3(2r − 3)− 3a6

]
, (B20)

J
{tr}
{nm̄} =−

3iλ
(
r3/2 + a

)
(va− 1)

8
√

2r7
(
2va+ r − 3

)2 [(r − 2)r + a2
][
− 2a

v
+ r(2r − 3) + 3a2

]
, (B21)

J
{tr}
{m̄m̄} = 0, (B22)

J
{tr}
{drnn} =−

3λ
(
r − a2

)
(va+ r)

4r9 (2va+ r − 3)
2

[
(r − 2)r + a2

][2a

v
+ r(3− 2r)− 3a2

]
, (B23)

J
{tr}
{drnm̄} =

3iλ
(
r3/2 + a

)
(va+ 1)

[
(r − 2)r + a2

][
− 2a

v + r(2r − 3) + 3a2
]

8
√

2r8 (2va+ r − 3)
2 , (B24)

J
{tr}
{drm̄m̄} = 0, (B25)

J
{tθ}
{nn} = 0, (B26)

J
{tθ}
{nm̄} =−

3λ (va+ r)
(
(r − 2)r + a2

) (
4a
v − r

2 − 3a2
)

8
√

2r7 (2va+ r − 3)
2 , (B27)

J
{tθ}
{m̄m̄} =−

3iλ
(
r3/2 + a

)
(va− 1)

(
− 4a

v + r2 + 3a2
)

4r6 (2va+ r − 3)
2 , (B28)

J
{tθ}
{dθnn} = 0, (B29)

J
{tθ}
{dθnm̄} =

3iλa (va+ r)
[
(r − 2)r + a2

] (
4a
v − r

2 − 3a2
)

8
√

2r8 (2va+ r − 3)
2 , (B30)

J
{tθ}
{dθm̄m̄} = −

3λa
(
r3/2 + a

)
(va− 1)

(
− 4a

v + r2 + 3a2
)

2r7 (2va+ r − 3)
2 , (B31)

J
{tφ}
{nn} =

3λv15
[
(r − 2)r + a2

] [
va3 + (r − 10)a2 +

(r2−6r+12)a
v + r2(3− 2r)

]
8 (2va+ r − 3)

2 , (B32)

J
{tφ}
{nm̄} = −

3iλ
(
r2 + 2a2

)
8
√

2r6
, (B33)

J
{tφ}
{m̄m̄} =

3λ
[
(r − 8)a4

√
r − r

(
r2 − 2r + 15

)
a3 + 2(r+4)a2

v3 − r3
(
r2 − 3r + 3

)
a+ r−2

v9 − a
5
]

4r6 (2va+ r − 3)
2

[(r − 2)r + a2]
, (B34)
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J
{rr}
{nn} =

3λ
[
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]3
16r9 (2va+ r − 3)

2 , (B35)

J
{rr}
{nm̄} =− 3iλv15 (va− 1)

8
√

2 (2va+ r − 3)
2

[
2a5

v
+ r(15− 8r)a4 +

4(r − 2)a3

v3

+ r2
(
−7r2 + 26r − 24

)
a2 +

2(r − 2)2a

v5
− (r − 2)2r3(2r − 3)− 3a6

]
, (B36)

J
{rr}
{m̄m̄} = −

3λ (va− 1)
2 [

2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
8r6 (2va+ r − 3)

2 , (B37)

J
{rr}
{drnn} =

3λ
(
r − a2

)
4r10 (2va+ r − 3)

2

[
2a5

v
+ r(15− 8r)a4 +

4(r − 2)a3

v3

+ r2
(
−7r2 + 26r − 24

)
a2 +

2(r − 2)2a

v5
− (r − 2)2r3(2r − 3)− 3a6

]
, (B38)

J
{rr}
{drnm̄} =

3iλ
[
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
8
√

2r9 (2va+ r − 3)
2

[
− a2

v

+ (r − 4)ra+
1

v5
+ 3a3

]
, (B39)

J
{rr}
{drm̄m̄} = −

3λ
(
r − a2

) [
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
4r8 (2va+ r − 3)

2 , (B40)

J
{rr}
{ddrnn} =−

3λ
[
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
4r11 (2va+ r − 3)

2

[
− 3(r − 4)ra2

+ 2(r − 3)r2 − 5a4

]
, (B41)

J
{rr}
{ddrnm̄} =

3iλa
[
−a
√
r + (r − 6)r + 6a2

] [
(r − 2)r + a2

] [
−2a
√
r + r(2r − 3) + 3a2

]
4
√

2r10 (2va+ r − 3)
2 , (B42)

J
{rr}
{ddrm̄m̄} = −

3λ
(
r + 3a2

) [
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
4r9 (2va+ r − 3)

2 , (B43)

Jrabθ = 0, (B44)

J
{rφ}
{nn} =− 3λv17

8 (2va+ r − 3)
2

[
2a5
√
r + r(15− 8r)a4 +

4(r − 2)a3

v3
+

2(r − 2)2a

v5

+ r2
(
−7r2 + 26r − 24

)
a2 − (r − 2)2r3(2r − 3)− 3a6

]
, (B45)

J
{rφ}
{nm̄} =

3iλ (va− 1)
[
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
8
√

2r7 (2va+ r − 3)
2 , (B46)
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J
{rφ}
{m̄m̄} = 0, (B47)

J
{rφ}
{drnn} = −

3λv19
(
r − a2

) [
2a
√
r + r(3− 2r)− 3a2

] [
(r − 2)r + a2

]
4 (2va+ r − 3)

2 , (B48)

J
{rφ}
{drnm̄} = −

3iλ (va+ 1)
(
2a
√
r + r(3− 2r)− 3a2

) [
(r − 2)r + a2

]
8
√

2r8 (2va+ r − 3)
2 , (B49)

J
{rφ}
{drm̄m̄} = 0, (B50)

J
{θθ}
{nn} =− 3λ

16r9 (2va+ r − 3)
2

[
4a5

v
+ r(12− 7r)a4 +

8(r − 2)a3

v3

+ r2
(
−5r2 + 16r − 12

)
a2 +

4(r − 2)2a

v5
− (r − 2)2r4 − 3a6

]
, (B51)

J
{θθ}
{nm̄} = −

3iλ (a−
√
r)
[
(r − 2)r + a2

] [
−4a
√
r + r2 + 3a2

]
8
√

2r8 (2va+ r − 3)
2 , (B52)

J
{θθ}
{m̄m̄} =

3λ (va− 1)
2 (

4a
√
r − r2 − 3a2

)
8r6 (2va+ r − 3)

2 , (B53)

J
{θθ}
{dθnn} = 0, (B54)

J
{θθ}
{dθnm̄} = −

3λa (a−
√
r)
[
(r − 2)r + a2

] (
−4a
√
r + r2 + 3a2

)
8
√

2r9 (2va+ r − 3)
2 , (B55)

J
{θθ}
{dθm̄m̄} = −

3iλa (va− 1)
2 (

4a
√
r − r2 − 3a2

)
4r7 (2va+ r − 3)

2 , (B56)

J
{θθ}
{ddθnn} =− 3λv21a (va− 1)

4 (2va+ r − 3)
2

[
− 4a5

√
r + r(7r − 12)a4 − 8(r − 2)a3

v3

+ r2
(
5r2 − 16r + 12

)
a2 − 4(r − 2)2a

v5
+ (r − 2)2r4 + 3a6

]
, (B57)

J
{θθ}
{ddθnm̄} =

3iλ
[
(r − 2)r + a2

] (
4a
√
r − r2 − 3a2

) [
6a2
√
r − r(r + 2)a+ r5/2 − 4a3

]
8
√

2r10 (2va+ r − 3)
2 , (B58)

J
{θθ}
{ddθm̄m̄} =

3λ (va− 1)
2 (
r2 + 3a2

) (
−4a
√
r + r2 + 3a2

)
4r8 (2va+ r − 3)

2 , (B59)

J
{θφ}
{nn} = 0, (B60)
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J
{θφ}
{nm̄} =

3λ
(
3va2 + r3/2 − 4a

) [
(r − 2)r + a2

]
8
√

2r7 (2va+ r − 3)
2 , (B61)

J
{θφ}
{m̄m̄} = −

3iλ (va− 1)
(
−4a
√
r + r2 + 3a2

)
4r6 (2va+ r − 3)

2 , (B62)

J
{θφ}
{dθnn} = 0, (B63)

J
{θφ}
{dθnm̄} = −

3iλa
(
3va2 + r3/2 − 4a

) [
(r − 2)r + a2

]
8
√

2r8 (2va+ r − 3)
2 , (B64)

J
{θφ}
{dθm̄m̄} =

3λa (va− 1)
(
4a
√
r − r2 − 3a2

)
2r7 (2va+ r − 3)

2 , (B65)

J
{φφ}
{nn} =

3λ
[
(r − 2)r + a2

] [
2(2r − 5)a

√
r + r

(
r2 − 8r + 12

)
+ a2

]
16r8 (2va+ r − 3)

2 , (B66)

J
{φφ}
{nm̄} = − 3iλa

8
√

2r6
, (B67)

J
{φφ}
{m̄m̄} = −

3λ
[
4(r − 2)a3

√
r + r

(
r2 − 10r + 15

)
a2 + 4(r − 2)ar3/2 − (r − 2)r3 + a4

]
8r6 (2va+ r − 3)

2
[(r − 2)r + a2]

. (B68)

Appendix C: Overlap regime of PN and BP method

To obtain the hybrid waveform between Post-Newtonian theory and Black hole perturbation method, we need to
check the consistency within the overlap regime of these two methods. In other words, the PN waveform taking the
mass ratio expansion should agree with the BP waveform taking the PN expansion, to the relevant orders. Technically
it suffices to compare the tide-induced energy and energy flux, which we explicitly show here up to the q−1 and 1.5 PN
order. In order to accomplish this goal, we need to expand the components in Appendix B, as well as the homogeneous
solutions of the Teukolsky equation with the ingoing boundary condition for l = 2, 3 and incident amplitudes which
can be found in [62].

ωRin2mω =
z4

30
+
iz5

45
− 11z6

1260
− iz7

420
+

23z8

45360
+

iz9

11340

+ ε

(
− z

3

15
− iz4

60
− 41z5

3780
− 31iz6

3780

)
+ ε2

(
z2

30
+
iz3

60

)
(C1)

ωRin3mω =
z5

630
+

iz6

1260
− z7

3780
− iz8

16200
+ ε

(
− z4

252
− iz5

756

)
(C2)

Bin2mω =
i

8ω2

{
1− επ

2
+ iε

(
5

4
− γ − log 2

)
+O(ε2)

}
(C3)

Bin3mω =− i

8ω2

{
1− επ

2
+ iε

(
13

6
− γ − log 2

)
+O(ε2)

}
(C4)

where z = ωr and ε = 2Mω. With these equations and components in Appendix B, we can obtain the energy flux up
to the 1.5PN order from Eq. (53):

E = η (MΩ)2/3

[
− 1

2
+

3

8
(MΩ)2/3 +

9

2
λ(MΩ)10/3 +

33

4
λ(MΩ)4

]
(C5)

dE

dt
= − 5

32η2 (MΩ)10/3

[
1− 1247

336
(MΩ)2/3 + 18λ(MΩ)10/3 − 704

28
λ(MΩ)4

]
(C6)
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which are same as the corresponding PN result by keeping only the η−1 order term[26]. According to Eq. (68), we
know that in the overlap regime the Post-Newtonian and Black Hole Perturbation methods are consistent.
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